Loading…

An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules

The TGF-beta/SMAD pathway is part of a broader signaling network in which crosstalk between pathways occurs. While the molecular mechanisms of TGF-beta/SMAD signaling pathway have been studied in detail, the global networks downstream of SMAD remain largely unknown. The regulatory effect of SMAD com...

Full description

Saved in:
Bibliographic Details
Published in:BMC systems biology 2009-07, Vol.3 (1), p.73-73, Article 73
Main Authors: Qin, Huaxia, Chan, Michael W Y, Liyanarachchi, Sandya, Balch, Curtis, Potter, Dustin, Souriraj, Irene J, Cheng, Alfred S L, Agosto-Perez, Francisco J, Nikonova, Elena V, Yan, Pearlly S, Lin, Huey-Jen, Nephew, Kenneth P, Saltz, Joel H, Showe, Louise C, Huang, Tim H M, Davuluri, Ramana V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The TGF-beta/SMAD pathway is part of a broader signaling network in which crosstalk between pathways occurs. While the molecular mechanisms of TGF-beta/SMAD signaling pathway have been studied in detail, the global networks downstream of SMAD remain largely unknown. The regulatory effect of SMAD complex likely depends on transcriptional modules, in which the SMAD binding elements and partner transcription factor binding sites (SMAD modules) are present in specific context. To address this question and develop a computational model for SMAD modules, we simultaneously performed chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and mRNA expression profiling to identify TGF-beta/SMAD regulated and synchronously coexpressed gene sets in ovarian surface epithelium. Intersecting the ChIP-chip and gene expression data yielded 150 direct targets, of which 141 were grouped into 3 co-expressed gene sets (sustained up-regulated, transient up-regulated and down-regulated), based on their temporal changes in expression after TGF-beta activation. We developed a data-mining method driven by the Random Forest algorithm to model SMAD transcriptional modules in the target sequences. The predicted SMAD modules contain SMAD binding element and up to 2 of 7 other transcription factor binding sites (E2F, P53, LEF1, ELK1, COUPTF, PAX4 and DR1). Together, the computational results further the understanding of the interactions between SMAD and other transcription factors at specific target promoters, and provide the basis for more targeted experimental verification of the co-regulatory modules.
ISSN:1752-0509
1752-0509
DOI:10.1186/1752-0509-3-73