Loading…

Seasonal and Regional Short-term Effects of Fine Particles on Hospital Admissions in 202 US Counties, 1999-2005

The authors investigated whether short-term effects of fine particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) on risk of cardiovascular and respiratory hospitalizations among the elderly varied by region and season in 202 US counties for 1999-2005. They fit 3 types of time-series model...

Full description

Saved in:
Bibliographic Details
Published in:American journal of epidemiology 2008-12, Vol.168 (11), p.1301-1310
Main Authors: Bell, Michelle L., Ebisu, Keita, Peng, Roger D., Walker, Jemma, Samet, Jonathan M., Zeger, Scott L., Dominici, Francesca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The authors investigated whether short-term effects of fine particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) on risk of cardiovascular and respiratory hospitalizations among the elderly varied by region and season in 202 US counties for 1999-2005. They fit 3 types of time-series models to provide evidence for 1) consistent particulate matter effects across the year, 2) different particulate matter effects by season, and 3) smoothly varying particulate matter effects throughout the year. The authors found statistically significant evidence of seasonal and regional variation in estimates of particulate matter effect. Respiratory disease effect estimates were highest in winter, with a 1.05% (95% posterior interval: 0.29, 1.82) increase in hospitalizations per 10-μg/m3 increase in same-day PM2.5. Cardiovascular diseases estimates were also highest in winter, with a 1.49% (95% confidence interval: 1.09, 1.89) increase in hospitalizations per 10-μg/m3 increase in same-day PM2.5, with associations also observed in other seasons. The strongest evidence of a relation between PM2.5 and hospitalizations was in the Northeast for both respiratory and cardiovascular diseases. Heterogeneity of PM2.5 effects on hospitalizations may reflect seasonal and regional differences in emissions and in particles' chemical constituents. Results can help guide development of hypotheses and further epidemiologic studies on potential heterogeneity in the toxicity of constituents of the particulate matter mixture.
ISSN:0002-9262
1476-6256
DOI:10.1093/aje/kwn252