Loading…
Overexpression of IGF-1 in Muscle Attenuates Disease in a Mouse Model of Spinal and Bulbar Muscular Atrophy
Expansion of a polyglutamine tract in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA). We previously showed that Akt-mediated phosphorylation of AR reduces ligand binding and attenuates the mutant AR toxicity. Here, we show that in culture insulin-like growth factor 1 (IG...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2009-08, Vol.63 (3), p.316-328 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Expansion of a polyglutamine tract in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA). We previously showed that Akt-mediated phosphorylation of AR reduces ligand binding and attenuates the mutant AR toxicity. Here, we show that in culture insulin-like growth factor 1 (IGF-1) reduces AR aggregation and increases AR clearance via the ubiquitin-proteasome system through phosphorylation of AR by Akt. In vivo, SBMA transgenic mice overexpressing a muscle-specific isoform of IGF-1 selectively in skeletal muscle show evidence of increased Akt activation and AR phosphorylation and decreased AR aggregation. Augmentation of IGF-1/Akt signaling rescues behavioral and histopathological abnormalities, extends the life span, and reduces both muscle and spinal cord pathology of SBMA mice. This study establishes IGF-1/Akt-mediated inactivation of mutant AR as a strategy to counteract disease in vivo and demonstrates that skeletal muscle is a viable target tissue for therapeutic intervention in SBMA. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2009.07.019 |