Loading…

Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine

Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive pro...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology and applied pharmacology 2009-07, Vol.238 (1), p.90-99
Main Authors: Kim, Sungkyoon, Kim, David, Pollack, Gary M., Collins, Leonard B., Rusyn, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13
cites cdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13
container_end_page 99
container_issue 1
container_start_page 90
container_title Toxicology and applied pharmacology
container_volume 238
creator Kim, Sungkyoon
Kim, David
Pollack, Gary M.
Collins, Leonard B.
Rusyn, Ivan
description Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)- l-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼ 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼ 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.
doi_str_mv 10.1016/j.taap.2009.04.019
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041008X09001720</els_id><sourcerecordid>20746043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</originalsourceid><addsrcrecordid>eNp9km-LEzEQxhdRvLP6BXwhAVEUbmuyye42IoIWq8KBggq-C9nZ6W1qNqlJWuh39cOYXut5wuGb_JvfPDMTnqJ4yOiUUda8WE2T1utpRamcUjGlTN4qThmVTUk557eLU0oFKymdfT8p7sW4ohkUgt0tTpgU-Uib0-LX50GHUYP_YRwmA0Q7bXfRROKXJAUDg_XBYxp2Fh2SEZPuvDVxJMaRUVskb5s5XzAyGsCXZOGzWDLeZZ2e9CaufTSX9-tyGg6lwPRnGbrh8Uv5jJ1V5Z_Y1ridfX5hN0mnIavhpfyNUElsCbuYMM9zv7iz1Dbig-M-Kb4t3n2dfyjPP73_OH9zXkItqlSKlvezukUmGa8rLjmrkbcd7zrJO9lp3rMO5KyeScAWGAjZN62mkvW0W_bA-KR4fdBdb7oRe0CXgrZqHcyow055bdS_EWcGdeG3qmp5O8vLpHh8EPAxGRXBJIQBvHMISVWsaqtaNpl6eiwT_M8NxqRGEwGt1Q79JqqKtqKhgmewOoAQfIwBl1etMKr21lErtbeO2ltHUaGydXLSo-tD_E05eiUDT46AjqDtMmgHJl5xFWt4LWqRuVcHDvOXbw2G_UDoAHsT9vP03vyvj98reeaL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20746043</pqid></control><display><type>article</type><title>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</title><source>ScienceDirect Freedom Collection</source><creator>Kim, Sungkyoon ; Kim, David ; Pollack, Gary M. ; Collins, Leonard B. ; Rusyn, Ivan</creator><creatorcontrib>Kim, Sungkyoon ; Kim, David ; Pollack, Gary M. ; Collins, Leonard B. ; Rusyn, Ivan</creatorcontrib><description>Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)- l-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼ 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼ 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.</description><identifier>ISSN: 0041-008X</identifier><identifier>EISSN: 1096-0333</identifier><identifier>DOI: 10.1016/j.taap.2009.04.019</identifier><identifier>PMID: 19409406</identifier><identifier>CODEN: TXAPA9</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Administration, Oral ; Animals ; Biological and medical sciences ; BIOLOGICAL AVAILABILITY ; BIOLOGICAL MARKERS ; CARCINOGENS ; Carcinogens - pharmacokinetics ; Chemical and industrial products toxicology. Toxic occupational diseases ; CHLORINATED ALIPHATIC HYDROCARBONS ; CYSTEINE ; Cysteine - analogs &amp; derivatives ; Cysteine - pharmacokinetics ; Dichloroacetic acid ; Dichloroacetic Acid - pharmacokinetics ; GLUTATHIONE ; Glutathione - analogs &amp; derivatives ; Glutathione - metabolism ; Glutathione - pharmacokinetics ; Half-Life ; HUMAN POPULATIONS ; KIDNEYS ; Male ; MALES ; Medical sciences ; METABOLISM ; METABOLITES ; MICE ; Models, Biological ; OXIDATION ; Oxidation-Reduction ; OXIDES ; Pharmacokinetics ; RATS ; RISK ASSESSMENT ; S-(1,2-dichlorovinyl)- l-cysteine ; S-(1,2-dichlorovinyl)glutathione ; Solvents ; Time Factors ; TOXICITY ; Toxicology ; Trichloroacetic acid ; Trichloroacetic Acid - pharmacokinetics ; Trichloroethylene ; Trichloroethylene - pharmacokinetics</subject><ispartof>Toxicology and applied pharmacology, 2009-07, Vol.238 (1), p.90-99</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</citedby><cites>FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21635454$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19409406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21272596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sungkyoon</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Pollack, Gary M.</creatorcontrib><creatorcontrib>Collins, Leonard B.</creatorcontrib><creatorcontrib>Rusyn, Ivan</creatorcontrib><title>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</title><title>Toxicology and applied pharmacology</title><addtitle>Toxicol Appl Pharmacol</addtitle><description>Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)- l-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼ 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼ 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Administration, Oral</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL AVAILABILITY</subject><subject>BIOLOGICAL MARKERS</subject><subject>CARCINOGENS</subject><subject>Carcinogens - pharmacokinetics</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>CHLORINATED ALIPHATIC HYDROCARBONS</subject><subject>CYSTEINE</subject><subject>Cysteine - analogs &amp; derivatives</subject><subject>Cysteine - pharmacokinetics</subject><subject>Dichloroacetic acid</subject><subject>Dichloroacetic Acid - pharmacokinetics</subject><subject>GLUTATHIONE</subject><subject>Glutathione - analogs &amp; derivatives</subject><subject>Glutathione - metabolism</subject><subject>Glutathione - pharmacokinetics</subject><subject>Half-Life</subject><subject>HUMAN POPULATIONS</subject><subject>KIDNEYS</subject><subject>Male</subject><subject>MALES</subject><subject>Medical sciences</subject><subject>METABOLISM</subject><subject>METABOLITES</subject><subject>MICE</subject><subject>Models, Biological</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>OXIDES</subject><subject>Pharmacokinetics</subject><subject>RATS</subject><subject>RISK ASSESSMENT</subject><subject>S-(1,2-dichlorovinyl)- l-cysteine</subject><subject>S-(1,2-dichlorovinyl)glutathione</subject><subject>Solvents</subject><subject>Time Factors</subject><subject>TOXICITY</subject><subject>Toxicology</subject><subject>Trichloroacetic acid</subject><subject>Trichloroacetic Acid - pharmacokinetics</subject><subject>Trichloroethylene</subject><subject>Trichloroethylene - pharmacokinetics</subject><issn>0041-008X</issn><issn>1096-0333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9km-LEzEQxhdRvLP6BXwhAVEUbmuyye42IoIWq8KBggq-C9nZ6W1qNqlJWuh39cOYXut5wuGb_JvfPDMTnqJ4yOiUUda8WE2T1utpRamcUjGlTN4qThmVTUk557eLU0oFKymdfT8p7sW4ohkUgt0tTpgU-Uib0-LX50GHUYP_YRwmA0Q7bXfRROKXJAUDg_XBYxp2Fh2SEZPuvDVxJMaRUVskb5s5XzAyGsCXZOGzWDLeZZ2e9CaufTSX9-tyGg6lwPRnGbrh8Uv5jJ1V5Z_Y1ridfX5hN0mnIavhpfyNUElsCbuYMM9zv7iz1Dbig-M-Kb4t3n2dfyjPP73_OH9zXkItqlSKlvezukUmGa8rLjmrkbcd7zrJO9lp3rMO5KyeScAWGAjZN62mkvW0W_bA-KR4fdBdb7oRe0CXgrZqHcyow055bdS_EWcGdeG3qmp5O8vLpHh8EPAxGRXBJIQBvHMISVWsaqtaNpl6eiwT_M8NxqRGEwGt1Q79JqqKtqKhgmewOoAQfIwBl1etMKr21lErtbeO2ltHUaGydXLSo-tD_E05eiUDT46AjqDtMmgHJl5xFWt4LWqRuVcHDvOXbw2G_UDoAHsT9vP03vyvj98reeaL</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Kim, Sungkyoon</creator><creator>Kim, David</creator><creator>Pollack, Gary M.</creator><creator>Collins, Leonard B.</creator><creator>Rusyn, Ivan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090701</creationdate><title>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</title><author>Kim, Sungkyoon ; Kim, David ; Pollack, Gary M. ; Collins, Leonard B. ; Rusyn, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Administration, Oral</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL AVAILABILITY</topic><topic>BIOLOGICAL MARKERS</topic><topic>CARCINOGENS</topic><topic>Carcinogens - pharmacokinetics</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>CHLORINATED ALIPHATIC HYDROCARBONS</topic><topic>CYSTEINE</topic><topic>Cysteine - analogs &amp; derivatives</topic><topic>Cysteine - pharmacokinetics</topic><topic>Dichloroacetic acid</topic><topic>Dichloroacetic Acid - pharmacokinetics</topic><topic>GLUTATHIONE</topic><topic>Glutathione - analogs &amp; derivatives</topic><topic>Glutathione - metabolism</topic><topic>Glutathione - pharmacokinetics</topic><topic>Half-Life</topic><topic>HUMAN POPULATIONS</topic><topic>KIDNEYS</topic><topic>Male</topic><topic>MALES</topic><topic>Medical sciences</topic><topic>METABOLISM</topic><topic>METABOLITES</topic><topic>MICE</topic><topic>Models, Biological</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>OXIDES</topic><topic>Pharmacokinetics</topic><topic>RATS</topic><topic>RISK ASSESSMENT</topic><topic>S-(1,2-dichlorovinyl)- l-cysteine</topic><topic>S-(1,2-dichlorovinyl)glutathione</topic><topic>Solvents</topic><topic>Time Factors</topic><topic>TOXICITY</topic><topic>Toxicology</topic><topic>Trichloroacetic acid</topic><topic>Trichloroacetic Acid - pharmacokinetics</topic><topic>Trichloroethylene</topic><topic>Trichloroethylene - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sungkyoon</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Pollack, Gary M.</creatorcontrib><creatorcontrib>Collins, Leonard B.</creatorcontrib><creatorcontrib>Rusyn, Ivan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Toxicology and applied pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sungkyoon</au><au>Kim, David</au><au>Pollack, Gary M.</au><au>Collins, Leonard B.</au><au>Rusyn, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</atitle><jtitle>Toxicology and applied pharmacology</jtitle><addtitle>Toxicol Appl Pharmacol</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>238</volume><issue>1</issue><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0041-008X</issn><eissn>1096-0333</eissn><coden>TXAPA9</coden><abstract>Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)- l-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼ 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼ 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>19409406</pmid><doi>10.1016/j.taap.2009.04.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-008X
ispartof Toxicology and applied pharmacology, 2009-07, Vol.238 (1), p.90-99
issn 0041-008X
1096-0333
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737827
source ScienceDirect Freedom Collection
subjects 60 APPLIED LIFE SCIENCES
Administration, Oral
Animals
Biological and medical sciences
BIOLOGICAL AVAILABILITY
BIOLOGICAL MARKERS
CARCINOGENS
Carcinogens - pharmacokinetics
Chemical and industrial products toxicology. Toxic occupational diseases
CHLORINATED ALIPHATIC HYDROCARBONS
CYSTEINE
Cysteine - analogs & derivatives
Cysteine - pharmacokinetics
Dichloroacetic acid
Dichloroacetic Acid - pharmacokinetics
GLUTATHIONE
Glutathione - analogs & derivatives
Glutathione - metabolism
Glutathione - pharmacokinetics
Half-Life
HUMAN POPULATIONS
KIDNEYS
Male
MALES
Medical sciences
METABOLISM
METABOLITES
MICE
Models, Biological
OXIDATION
Oxidation-Reduction
OXIDES
Pharmacokinetics
RATS
RISK ASSESSMENT
S-(1,2-dichlorovinyl)- l-cysteine
S-(1,2-dichlorovinyl)glutathione
Solvents
Time Factors
TOXICITY
Toxicology
Trichloroacetic acid
Trichloroacetic Acid - pharmacokinetics
Trichloroethylene
Trichloroethylene - pharmacokinetics
title Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacokinetic%20analysis%20of%20trichloroethylene%20metabolism%20in%20male%20B6C3F1%20mice:%20Formation%20and%20disposition%20of%20trichloroacetic%20acid,%20dichloroacetic%20acid,%20S-(1,2-dichlorovinyl)glutathione%20and%20S-(1,2-dichlorovinyl)-%20l-cysteine&rft.jtitle=Toxicology%20and%20applied%20pharmacology&rft.au=Kim,%20Sungkyoon&rft.date=2009-07-01&rft.volume=238&rft.issue=1&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0041-008X&rft.eissn=1096-0333&rft.coden=TXAPA9&rft_id=info:doi/10.1016/j.taap.2009.04.019&rft_dat=%3Cproquest_pubme%3E20746043%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20746043&rft_id=info:pmid/19409406&rfr_iscdi=true