Loading…
Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine
Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive pro...
Saved in:
Published in: | Toxicology and applied pharmacology 2009-07, Vol.238 (1), p.90-99 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13 |
container_end_page | 99 |
container_issue | 1 |
container_start_page | 90 |
container_title | Toxicology and applied pharmacology |
container_volume | 238 |
creator | Kim, Sungkyoon Kim, David Pollack, Gary M. Collins, Leonard B. Rusyn, Ivan |
description | Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as
S-(1,2-dichlorovinyl)-
l-cysteine (DCVC), and
S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼
74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼
3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment. |
doi_str_mv | 10.1016/j.taap.2009.04.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041008X09001720</els_id><sourcerecordid>20746043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</originalsourceid><addsrcrecordid>eNp9km-LEzEQxhdRvLP6BXwhAVEUbmuyye42IoIWq8KBggq-C9nZ6W1qNqlJWuh39cOYXut5wuGb_JvfPDMTnqJ4yOiUUda8WE2T1utpRamcUjGlTN4qThmVTUk557eLU0oFKymdfT8p7sW4ohkUgt0tTpgU-Uib0-LX50GHUYP_YRwmA0Q7bXfRROKXJAUDg_XBYxp2Fh2SEZPuvDVxJMaRUVskb5s5XzAyGsCXZOGzWDLeZZ2e9CaufTSX9-tyGg6lwPRnGbrh8Uv5jJ1V5Z_Y1ridfX5hN0mnIavhpfyNUElsCbuYMM9zv7iz1Dbig-M-Kb4t3n2dfyjPP73_OH9zXkItqlSKlvezukUmGa8rLjmrkbcd7zrJO9lp3rMO5KyeScAWGAjZN62mkvW0W_bA-KR4fdBdb7oRe0CXgrZqHcyow055bdS_EWcGdeG3qmp5O8vLpHh8EPAxGRXBJIQBvHMISVWsaqtaNpl6eiwT_M8NxqRGEwGt1Q79JqqKtqKhgmewOoAQfIwBl1etMKr21lErtbeO2ltHUaGydXLSo-tD_E05eiUDT46AjqDtMmgHJl5xFWt4LWqRuVcHDvOXbw2G_UDoAHsT9vP03vyvj98reeaL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20746043</pqid></control><display><type>article</type><title>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</title><source>ScienceDirect Freedom Collection</source><creator>Kim, Sungkyoon ; Kim, David ; Pollack, Gary M. ; Collins, Leonard B. ; Rusyn, Ivan</creator><creatorcontrib>Kim, Sungkyoon ; Kim, David ; Pollack, Gary M. ; Collins, Leonard B. ; Rusyn, Ivan</creatorcontrib><description>Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as
S-(1,2-dichlorovinyl)-
l-cysteine (DCVC), and
S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼
74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼
3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.</description><identifier>ISSN: 0041-008X</identifier><identifier>EISSN: 1096-0333</identifier><identifier>DOI: 10.1016/j.taap.2009.04.019</identifier><identifier>PMID: 19409406</identifier><identifier>CODEN: TXAPA9</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Administration, Oral ; Animals ; Biological and medical sciences ; BIOLOGICAL AVAILABILITY ; BIOLOGICAL MARKERS ; CARCINOGENS ; Carcinogens - pharmacokinetics ; Chemical and industrial products toxicology. Toxic occupational diseases ; CHLORINATED ALIPHATIC HYDROCARBONS ; CYSTEINE ; Cysteine - analogs & derivatives ; Cysteine - pharmacokinetics ; Dichloroacetic acid ; Dichloroacetic Acid - pharmacokinetics ; GLUTATHIONE ; Glutathione - analogs & derivatives ; Glutathione - metabolism ; Glutathione - pharmacokinetics ; Half-Life ; HUMAN POPULATIONS ; KIDNEYS ; Male ; MALES ; Medical sciences ; METABOLISM ; METABOLITES ; MICE ; Models, Biological ; OXIDATION ; Oxidation-Reduction ; OXIDES ; Pharmacokinetics ; RATS ; RISK ASSESSMENT ; S-(1,2-dichlorovinyl)- l-cysteine ; S-(1,2-dichlorovinyl)glutathione ; Solvents ; Time Factors ; TOXICITY ; Toxicology ; Trichloroacetic acid ; Trichloroacetic Acid - pharmacokinetics ; Trichloroethylene ; Trichloroethylene - pharmacokinetics</subject><ispartof>Toxicology and applied pharmacology, 2009-07, Vol.238 (1), p.90-99</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</citedby><cites>FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21635454$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19409406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21272596$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sungkyoon</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Pollack, Gary M.</creatorcontrib><creatorcontrib>Collins, Leonard B.</creatorcontrib><creatorcontrib>Rusyn, Ivan</creatorcontrib><title>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</title><title>Toxicology and applied pharmacology</title><addtitle>Toxicol Appl Pharmacol</addtitle><description>Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as
S-(1,2-dichlorovinyl)-
l-cysteine (DCVC), and
S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼
74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼
3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Administration, Oral</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL AVAILABILITY</subject><subject>BIOLOGICAL MARKERS</subject><subject>CARCINOGENS</subject><subject>Carcinogens - pharmacokinetics</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>CHLORINATED ALIPHATIC HYDROCARBONS</subject><subject>CYSTEINE</subject><subject>Cysteine - analogs & derivatives</subject><subject>Cysteine - pharmacokinetics</subject><subject>Dichloroacetic acid</subject><subject>Dichloroacetic Acid - pharmacokinetics</subject><subject>GLUTATHIONE</subject><subject>Glutathione - analogs & derivatives</subject><subject>Glutathione - metabolism</subject><subject>Glutathione - pharmacokinetics</subject><subject>Half-Life</subject><subject>HUMAN POPULATIONS</subject><subject>KIDNEYS</subject><subject>Male</subject><subject>MALES</subject><subject>Medical sciences</subject><subject>METABOLISM</subject><subject>METABOLITES</subject><subject>MICE</subject><subject>Models, Biological</subject><subject>OXIDATION</subject><subject>Oxidation-Reduction</subject><subject>OXIDES</subject><subject>Pharmacokinetics</subject><subject>RATS</subject><subject>RISK ASSESSMENT</subject><subject>S-(1,2-dichlorovinyl)- l-cysteine</subject><subject>S-(1,2-dichlorovinyl)glutathione</subject><subject>Solvents</subject><subject>Time Factors</subject><subject>TOXICITY</subject><subject>Toxicology</subject><subject>Trichloroacetic acid</subject><subject>Trichloroacetic Acid - pharmacokinetics</subject><subject>Trichloroethylene</subject><subject>Trichloroethylene - pharmacokinetics</subject><issn>0041-008X</issn><issn>1096-0333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9km-LEzEQxhdRvLP6BXwhAVEUbmuyye42IoIWq8KBggq-C9nZ6W1qNqlJWuh39cOYXut5wuGb_JvfPDMTnqJ4yOiUUda8WE2T1utpRamcUjGlTN4qThmVTUk557eLU0oFKymdfT8p7sW4ohkUgt0tTpgU-Uib0-LX50GHUYP_YRwmA0Q7bXfRROKXJAUDg_XBYxp2Fh2SEZPuvDVxJMaRUVskb5s5XzAyGsCXZOGzWDLeZZ2e9CaufTSX9-tyGg6lwPRnGbrh8Uv5jJ1V5Z_Y1ridfX5hN0mnIavhpfyNUElsCbuYMM9zv7iz1Dbig-M-Kb4t3n2dfyjPP73_OH9zXkItqlSKlvezukUmGa8rLjmrkbcd7zrJO9lp3rMO5KyeScAWGAjZN62mkvW0W_bA-KR4fdBdb7oRe0CXgrZqHcyow055bdS_EWcGdeG3qmp5O8vLpHh8EPAxGRXBJIQBvHMISVWsaqtaNpl6eiwT_M8NxqRGEwGt1Q79JqqKtqKhgmewOoAQfIwBl1etMKr21lErtbeO2ltHUaGydXLSo-tD_E05eiUDT46AjqDtMmgHJl5xFWt4LWqRuVcHDvOXbw2G_UDoAHsT9vP03vyvj98reeaL</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Kim, Sungkyoon</creator><creator>Kim, David</creator><creator>Pollack, Gary M.</creator><creator>Collins, Leonard B.</creator><creator>Rusyn, Ivan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090701</creationdate><title>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</title><author>Kim, Sungkyoon ; Kim, David ; Pollack, Gary M. ; Collins, Leonard B. ; Rusyn, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Administration, Oral</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL AVAILABILITY</topic><topic>BIOLOGICAL MARKERS</topic><topic>CARCINOGENS</topic><topic>Carcinogens - pharmacokinetics</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>CHLORINATED ALIPHATIC HYDROCARBONS</topic><topic>CYSTEINE</topic><topic>Cysteine - analogs & derivatives</topic><topic>Cysteine - pharmacokinetics</topic><topic>Dichloroacetic acid</topic><topic>Dichloroacetic Acid - pharmacokinetics</topic><topic>GLUTATHIONE</topic><topic>Glutathione - analogs & derivatives</topic><topic>Glutathione - metabolism</topic><topic>Glutathione - pharmacokinetics</topic><topic>Half-Life</topic><topic>HUMAN POPULATIONS</topic><topic>KIDNEYS</topic><topic>Male</topic><topic>MALES</topic><topic>Medical sciences</topic><topic>METABOLISM</topic><topic>METABOLITES</topic><topic>MICE</topic><topic>Models, Biological</topic><topic>OXIDATION</topic><topic>Oxidation-Reduction</topic><topic>OXIDES</topic><topic>Pharmacokinetics</topic><topic>RATS</topic><topic>RISK ASSESSMENT</topic><topic>S-(1,2-dichlorovinyl)- l-cysteine</topic><topic>S-(1,2-dichlorovinyl)glutathione</topic><topic>Solvents</topic><topic>Time Factors</topic><topic>TOXICITY</topic><topic>Toxicology</topic><topic>Trichloroacetic acid</topic><topic>Trichloroacetic Acid - pharmacokinetics</topic><topic>Trichloroethylene</topic><topic>Trichloroethylene - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sungkyoon</creatorcontrib><creatorcontrib>Kim, David</creatorcontrib><creatorcontrib>Pollack, Gary M.</creatorcontrib><creatorcontrib>Collins, Leonard B.</creatorcontrib><creatorcontrib>Rusyn, Ivan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Toxicology and applied pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sungkyoon</au><au>Kim, David</au><au>Pollack, Gary M.</au><au>Collins, Leonard B.</au><au>Rusyn, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine</atitle><jtitle>Toxicology and applied pharmacology</jtitle><addtitle>Toxicol Appl Pharmacol</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>238</volume><issue>1</issue><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0041-008X</issn><eissn>1096-0333</eissn><coden>TXAPA9</coden><abstract>Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as
S-(1,2-dichlorovinyl)-
l-cysteine (DCVC), and
S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼
74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼
3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>19409406</pmid><doi>10.1016/j.taap.2009.04.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-008X |
ispartof | Toxicology and applied pharmacology, 2009-07, Vol.238 (1), p.90-99 |
issn | 0041-008X 1096-0333 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737827 |
source | ScienceDirect Freedom Collection |
subjects | 60 APPLIED LIFE SCIENCES Administration, Oral Animals Biological and medical sciences BIOLOGICAL AVAILABILITY BIOLOGICAL MARKERS CARCINOGENS Carcinogens - pharmacokinetics Chemical and industrial products toxicology. Toxic occupational diseases CHLORINATED ALIPHATIC HYDROCARBONS CYSTEINE Cysteine - analogs & derivatives Cysteine - pharmacokinetics Dichloroacetic acid Dichloroacetic Acid - pharmacokinetics GLUTATHIONE Glutathione - analogs & derivatives Glutathione - metabolism Glutathione - pharmacokinetics Half-Life HUMAN POPULATIONS KIDNEYS Male MALES Medical sciences METABOLISM METABOLITES MICE Models, Biological OXIDATION Oxidation-Reduction OXIDES Pharmacokinetics RATS RISK ASSESSMENT S-(1,2-dichlorovinyl)- l-cysteine S-(1,2-dichlorovinyl)glutathione Solvents Time Factors TOXICITY Toxicology Trichloroacetic acid Trichloroacetic Acid - pharmacokinetics Trichloroethylene Trichloroethylene - pharmacokinetics |
title | Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)- l-cysteine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacokinetic%20analysis%20of%20trichloroethylene%20metabolism%20in%20male%20B6C3F1%20mice:%20Formation%20and%20disposition%20of%20trichloroacetic%20acid,%20dichloroacetic%20acid,%20S-(1,2-dichlorovinyl)glutathione%20and%20S-(1,2-dichlorovinyl)-%20l-cysteine&rft.jtitle=Toxicology%20and%20applied%20pharmacology&rft.au=Kim,%20Sungkyoon&rft.date=2009-07-01&rft.volume=238&rft.issue=1&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0041-008X&rft.eissn=1096-0333&rft.coden=TXAPA9&rft_id=info:doi/10.1016/j.taap.2009.04.019&rft_dat=%3Cproquest_pubme%3E20746043%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-473d857e19135239315e37b3bb93b9ba3d1bc98589ce7c1c49d67a091d0bfdc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20746043&rft_id=info:pmid/19409406&rfr_iscdi=true |