Loading…

Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part II measurement of dry-layer resistance

The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a labo...

Full description

Saved in:
Bibliographic Details
Published in:AAPS PharmSciTech 2006-12, Vol.7 (4), p.93-E84
Main Authors: Tang, Xiaolin Charlie, Nail, Steven L, Pikal, Michael J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the "vial method." The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (DeltaT; 2 degrees C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with DeltaT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and "vial-method" resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few "warm" edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of DeltaT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.
ISSN:1530-9932
1530-9932
DOI:10.1208/pt070493