Loading…

Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury

Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2008-04, Vol.28 (14), p.3814-3823
Main Authors: Tysseling-Mattiace, Vicki M, Sahni, Vibhu, Niece, Krista L, Birch, Derin, Czeisler, Catherine, Fehlings, Michael G, Stupp, Samuel I, Kessler, John A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-a134122e318a691a972540657e39730e950beadd31ef85eae4cc5915c4966c493
cites cdi_FETCH-LOGICAL-c594t-a134122e318a691a972540657e39730e950beadd31ef85eae4cc5915c4966c493
container_end_page 3823
container_issue 14
container_start_page 3814
container_title The Journal of neuroscience
container_volume 28
creator Tysseling-Mattiace, Vicki M
Sahni, Vibhu
Niece, Krista L
Birch, Derin
Czeisler, Catherine
Fehlings, Michael G
Stupp, Samuel I
Kessler, John A
description Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules are designed to form cylindrical nanofibers that display to cells in the spinal cord the laminin epitope IKVAV at nearly van der Waals density. IKVAV PA nanofibers are known to inhibit glial differentiation of cultured neural stem cells and to promote neurite outgrowth from cultured neurons. In this work, in vivo treatment with the PA after SCI reduced astrogliosis, reduced cell death, and increased the number of oligodendroglia at the site of injury. Furthermore, the nanofibers promoted regeneration of both descending motor fibers and ascending sensory fibers through the lesion site. Treatment with the PA also resulted in significant behavioral improvement. These observations demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration after SCI using bioactive three-dimensional nanostructures displaying high densities of neuroactive epitopes on their surfaces.
doi_str_mv 10.1523/JNEUROSCI.0143-08.2008
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2752951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20694108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-a134122e318a691a972540657e39730e950beadd31ef85eae4cc5915c4966c493</originalsourceid><addsrcrecordid>eNpVkV9r2zAUxcXYaLOuX6H4aXtydvXHtvwyCCHtMkpbmvVZyPZ1oiJLmeQ067efQkK3veiCzu8ciXsIuaIwpQXjX3_cLZ4e71fz5RSo4DnIKQOQ78gkqXXOBND3ZAKsgrwUlTgnH2N8BoAKaHVGzqnksuC8nhC7QtvnsxhxaKxx6-xOO9-bBkPMlm5jGjNmN9Zom61aHbJrHwY9Gu8y7brsIfjBj5jNfqeLhfVufdL6EUO22hqXfHMfuhT1vAuvn8iHXtuIl6d5QZ6uFz_n3_Pb-5vlfHabt0UtxlxTLihjyKnUZU11XbFCQFlUyOuKA9YFNKi7jlPsZYEaRZuMtGhFXZbp4Bfk2zF3u2sG7Fp0Y9BWbYMZdHhVXhv1v-LMRq39i2JV2l5BU8DnU0Dwv3YYRzWY2KK12qHfRcWgrAUFmcDyCLbBxxiwf3uEgjoUpd6KUoeiFEh1KCoZr_794l_bqZkEfDkCG7Pe7E1AFQdtbcKp2u_3TCoqFJcp8w-RtZ6_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20694108</pqid></control><display><type>article</type><title>Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury</title><source>PubMed</source><creator>Tysseling-Mattiace, Vicki M ; Sahni, Vibhu ; Niece, Krista L ; Birch, Derin ; Czeisler, Catherine ; Fehlings, Michael G ; Stupp, Samuel I ; Kessler, John A</creator><creatorcontrib>Tysseling-Mattiace, Vicki M ; Sahni, Vibhu ; Niece, Krista L ; Birch, Derin ; Czeisler, Catherine ; Fehlings, Michael G ; Stupp, Samuel I ; Kessler, John A</creatorcontrib><description>Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules are designed to form cylindrical nanofibers that display to cells in the spinal cord the laminin epitope IKVAV at nearly van der Waals density. IKVAV PA nanofibers are known to inhibit glial differentiation of cultured neural stem cells and to promote neurite outgrowth from cultured neurons. In this work, in vivo treatment with the PA after SCI reduced astrogliosis, reduced cell death, and increased the number of oligodendroglia at the site of injury. Furthermore, the nanofibers promoted regeneration of both descending motor fibers and ascending sensory fibers through the lesion site. Treatment with the PA also resulted in significant behavioral improvement. These observations demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration after SCI using bioactive three-dimensional nanostructures displaying high densities of neuroactive epitopes on their surfaces.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0143-08.2008</identifier><identifier>PMID: 18385339</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Analysis of Variance ; Animals ; Apoptosis - drug effects ; Axons - drug effects ; Axons - physiology ; Caspase 3 - metabolism ; Cicatrix - drug therapy ; Diagnostic Imaging - methods ; Disease Models, Animal ; Female ; Glial Fibrillary Acidic Protein - metabolism ; Gliosis - drug therapy ; Laminin - metabolism ; Laminin - therapeutic use ; Mice ; Motor Neurons - pathology ; Nerve Regeneration - drug effects ; Neuroglia - drug effects ; Peptide Fragments - metabolism ; Peptide Fragments - therapeutic use ; Recovery of Function - drug effects ; Spinal Cord Injuries - drug therapy ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - physiopathology ; Time Factors</subject><ispartof>The Journal of neuroscience, 2008-04, Vol.28 (14), p.3814-3823</ispartof><rights>Copyright © 2008 Society for Neuroscience 0270-6474/08/283814-10$15.00/0 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-a134122e318a691a972540657e39730e950beadd31ef85eae4cc5915c4966c493</citedby><cites>FETCH-LOGICAL-c594t-a134122e318a691a972540657e39730e950beadd31ef85eae4cc5915c4966c493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752951/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752951/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18385339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tysseling-Mattiace, Vicki M</creatorcontrib><creatorcontrib>Sahni, Vibhu</creatorcontrib><creatorcontrib>Niece, Krista L</creatorcontrib><creatorcontrib>Birch, Derin</creatorcontrib><creatorcontrib>Czeisler, Catherine</creatorcontrib><creatorcontrib>Fehlings, Michael G</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Kessler, John A</creatorcontrib><title>Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules are designed to form cylindrical nanofibers that display to cells in the spinal cord the laminin epitope IKVAV at nearly van der Waals density. IKVAV PA nanofibers are known to inhibit glial differentiation of cultured neural stem cells and to promote neurite outgrowth from cultured neurons. In this work, in vivo treatment with the PA after SCI reduced astrogliosis, reduced cell death, and increased the number of oligodendroglia at the site of injury. Furthermore, the nanofibers promoted regeneration of both descending motor fibers and ascending sensory fibers through the lesion site. Treatment with the PA also resulted in significant behavioral improvement. These observations demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration after SCI using bioactive three-dimensional nanostructures displaying high densities of neuroactive epitopes on their surfaces.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Axons - drug effects</subject><subject>Axons - physiology</subject><subject>Caspase 3 - metabolism</subject><subject>Cicatrix - drug therapy</subject><subject>Diagnostic Imaging - methods</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Gliosis - drug therapy</subject><subject>Laminin - metabolism</subject><subject>Laminin - therapeutic use</subject><subject>Mice</subject><subject>Motor Neurons - pathology</subject><subject>Nerve Regeneration - drug effects</subject><subject>Neuroglia - drug effects</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Fragments - therapeutic use</subject><subject>Recovery of Function - drug effects</subject><subject>Spinal Cord Injuries - drug therapy</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Time Factors</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkV9r2zAUxcXYaLOuX6H4aXtydvXHtvwyCCHtMkpbmvVZyPZ1oiJLmeQ067efQkK3veiCzu8ciXsIuaIwpQXjX3_cLZ4e71fz5RSo4DnIKQOQ78gkqXXOBND3ZAKsgrwUlTgnH2N8BoAKaHVGzqnksuC8nhC7QtvnsxhxaKxx6-xOO9-bBkPMlm5jGjNmN9Zom61aHbJrHwY9Gu8y7brsIfjBj5jNfqeLhfVufdL6EUO22hqXfHMfuhT1vAuvn8iHXtuIl6d5QZ6uFz_n3_Pb-5vlfHabt0UtxlxTLihjyKnUZU11XbFCQFlUyOuKA9YFNKi7jlPsZYEaRZuMtGhFXZbp4Bfk2zF3u2sG7Fp0Y9BWbYMZdHhVXhv1v-LMRq39i2JV2l5BU8DnU0Dwv3YYRzWY2KK12qHfRcWgrAUFmcDyCLbBxxiwf3uEgjoUpd6KUoeiFEh1KCoZr_794l_bqZkEfDkCG7Pe7E1AFQdtbcKp2u_3TCoqFJcp8w-RtZ6_</recordid><startdate>20080402</startdate><enddate>20080402</enddate><creator>Tysseling-Mattiace, Vicki M</creator><creator>Sahni, Vibhu</creator><creator>Niece, Krista L</creator><creator>Birch, Derin</creator><creator>Czeisler, Catherine</creator><creator>Fehlings, Michael G</creator><creator>Stupp, Samuel I</creator><creator>Kessler, John A</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20080402</creationdate><title>Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury</title><author>Tysseling-Mattiace, Vicki M ; Sahni, Vibhu ; Niece, Krista L ; Birch, Derin ; Czeisler, Catherine ; Fehlings, Michael G ; Stupp, Samuel I ; Kessler, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-a134122e318a691a972540657e39730e950beadd31ef85eae4cc5915c4966c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Axons - drug effects</topic><topic>Axons - physiology</topic><topic>Caspase 3 - metabolism</topic><topic>Cicatrix - drug therapy</topic><topic>Diagnostic Imaging - methods</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Gliosis - drug therapy</topic><topic>Laminin - metabolism</topic><topic>Laminin - therapeutic use</topic><topic>Mice</topic><topic>Motor Neurons - pathology</topic><topic>Nerve Regeneration - drug effects</topic><topic>Neuroglia - drug effects</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Fragments - therapeutic use</topic><topic>Recovery of Function - drug effects</topic><topic>Spinal Cord Injuries - drug therapy</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tysseling-Mattiace, Vicki M</creatorcontrib><creatorcontrib>Sahni, Vibhu</creatorcontrib><creatorcontrib>Niece, Krista L</creatorcontrib><creatorcontrib>Birch, Derin</creatorcontrib><creatorcontrib>Czeisler, Catherine</creatorcontrib><creatorcontrib>Fehlings, Michael G</creatorcontrib><creatorcontrib>Stupp, Samuel I</creatorcontrib><creatorcontrib>Kessler, John A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tysseling-Mattiace, Vicki M</au><au>Sahni, Vibhu</au><au>Niece, Krista L</au><au>Birch, Derin</au><au>Czeisler, Catherine</au><au>Fehlings, Michael G</au><au>Stupp, Samuel I</au><au>Kessler, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2008-04-02</date><risdate>2008</risdate><volume>28</volume><issue>14</issue><spage>3814</spage><epage>3823</epage><pages>3814-3823</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Peptide amphiphile (PA) molecules that self-assemble in vivo into supramolecular nanofibers were used as a therapy in a mouse model of spinal cord injury (SCI). Because self-assembly of these molecules is triggered by the ionic strength of the in vivo environment, nanoscale structures can be created within the extracellular spaces of the spinal cord by simply injecting a liquid. The molecules are designed to form cylindrical nanofibers that display to cells in the spinal cord the laminin epitope IKVAV at nearly van der Waals density. IKVAV PA nanofibers are known to inhibit glial differentiation of cultured neural stem cells and to promote neurite outgrowth from cultured neurons. In this work, in vivo treatment with the PA after SCI reduced astrogliosis, reduced cell death, and increased the number of oligodendroglia at the site of injury. Furthermore, the nanofibers promoted regeneration of both descending motor fibers and ascending sensory fibers through the lesion site. Treatment with the PA also resulted in significant behavioral improvement. These observations demonstrate that it is possible to inhibit glial scar formation and to facilitate regeneration after SCI using bioactive three-dimensional nanostructures displaying high densities of neuroactive epitopes on their surfaces.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>18385339</pmid><doi>10.1523/JNEUROSCI.0143-08.2008</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2008-04, Vol.28 (14), p.3814-3823
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2752951
source PubMed
subjects Analysis of Variance
Animals
Apoptosis - drug effects
Axons - drug effects
Axons - physiology
Caspase 3 - metabolism
Cicatrix - drug therapy
Diagnostic Imaging - methods
Disease Models, Animal
Female
Glial Fibrillary Acidic Protein - metabolism
Gliosis - drug therapy
Laminin - metabolism
Laminin - therapeutic use
Mice
Motor Neurons - pathology
Nerve Regeneration - drug effects
Neuroglia - drug effects
Peptide Fragments - metabolism
Peptide Fragments - therapeutic use
Recovery of Function - drug effects
Spinal Cord Injuries - drug therapy
Spinal Cord Injuries - pathology
Spinal Cord Injuries - physiopathology
Time Factors
title Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembling%20Nanofibers%20Inhibit%20Glial%20Scar%20Formation%20and%20Promote%20Axon%20Elongation%20after%20Spinal%20Cord%20Injury&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Tysseling-Mattiace,%20Vicki%20M&rft.date=2008-04-02&rft.volume=28&rft.issue=14&rft.spage=3814&rft.epage=3823&rft.pages=3814-3823&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0143-08.2008&rft_dat=%3Cproquest_pubme%3E20694108%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-a134122e318a691a972540657e39730e950beadd31ef85eae4cc5915c4966c493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20694108&rft_id=info:pmid/18385339&rfr_iscdi=true