Loading…

Platelet-Derived Growth Factor C Is Upregulated in Human Uterine Fibroids and Regulates Uterine Smooth Muscle Cell Growth1

Leiomyomata uteri (i.e., uterine fibroids) are benign tumors arising from the abnormal growth of uterine smooth muscle cells (SMCs). We show here that the expression of platelet-derived growth factor C (PDGFC) is higher in approximately 80% of uterine fibroids than in adjacent myometrial tissues exa...

Full description

Saved in:
Bibliographic Details
Published in:Biology of reproduction 2009-10, Vol.81 (4), p.749-758
Main Authors: Suo, Guangli, Jiang, Yong, Cowan, Bryan, Wang, Jean Y.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Leiomyomata uteri (i.e., uterine fibroids) are benign tumors arising from the abnormal growth of uterine smooth muscle cells (SMCs). We show here that the expression of platelet-derived growth factor C (PDGFC) is higher in approximately 80% of uterine fibroids than in adjacent myometrial tissues examined. Increased expression of PDGFC is also observed in fibroid-derived SMCs (fSMCs) relative to myometrial-derived SMCs (mSMCs). Recombinant bioactive PDGFCC homodimer stimulates the growth of fSMCs and mSMCs in ex vivo cultures and prolongs the survival of fSMCs in Matrigel plugs implemented subcutaneously in immunocompromised mice. The knockdown of PDGF receptor-alpha (PDGFRA) through lentiviral-mediated RNA interference reduces the growth of fSMCs and mSMCs in ex vivo cultures and in Matrigel implants. Furthermore, two small molecule inhibitors of the PDGFR tyrosine kinase (i.e., imatinib and dasatinib) exerted negative effects on fSMC and mSMC growth in ex vivo cultures, albeit at concentrations that cannot be achieved in vivo. These results suggest that the PDGFCC/PDGFRA signaling module plays an important role in fSMC and mSMC growth, and that the upregulation of PDGFC expression may contribute to the clonal expansion of fSMCs in the development of uterine fibroids.
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod.109.076869