Loading…

Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers

Action potential (AP) excitation requires a transient dominance of depolarizing membrane currents over the repolarizing membrane currents that stabilize the resting membrane potential. Such stabilizing currents, in turn, depend on passive membrane conductance (G(m)), which in skeletal muscle fibers...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of general physiology 2009-10, Vol.134 (4), p.309-322
Main Authors: Pedersen, Thomas Holm, de Paoli, Frank Vincenzo, de Paoli, Frank Vinzenco, Flatman, John A, Nielsen, Ole Baekgaard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Action potential (AP) excitation requires a transient dominance of depolarizing membrane currents over the repolarizing membrane currents that stabilize the resting membrane potential. Such stabilizing currents, in turn, depend on passive membrane conductance (G(m)), which in skeletal muscle fibers covers membrane conductances for K(+) (G(K)) and Cl(-) (G(Cl)). Myotonic disorders and studies with metabolically poisoned muscle have revealed capacities of G(K) and G(Cl) to inversely interfere with muscle excitability. However, whether regulation of G(K) and G(Cl) occur in AP-firing muscle under normal physiological conditions is unknown. This study establishes a technique that allows the determination of G(Cl) and G(K) with a temporal resolution of seconds in AP-firing muscle fibers. With this approach, we have identified and quantified a biphasic regulation of G(m) in active fast-twitch extensor digitorum longus fibers of the rat. Thus, at the onset of AP firing, a reduction in G(Cl) of approximately 70% caused G(m) to decline by approximately 55% in a manner that is well described by a single exponential function characterized by a time constant of approximately 200 APs (phase 1). When stimulation was continued beyond approximately 1,800 APs, synchronized elevations in G(K) ( approximately 14-fold) and G(Cl) ( approximately 3-fold) caused G(m) to rise sigmoidally to approximately 400% of its level before AP firing (phase 2). Phase 2 was often associated with a failure to excite APs. When AP firing was ceased during phase 2, G(m) recovered to its level before AP firing in approximately 1 min. Experiments with glibenclamide (K(ATP) channel inhibitor) and 9-anthracene carboxylic acid (ClC-1 Cl(-) channel inhibitor) revealed that the decreased G(m) during phase 1 reflected ClC-1 channel inhibition, whereas the massively elevated G(m) during phase 2 reflected synchronized openings of ClC-1 and K(ATP) channels. In conclusion, G(Cl) and G(K) are acutely regulated in AP-firing fast-twitch muscle fibers. Such regulation may contribute to the physiological control of excitability in active muscle.
ISSN:0022-1295
1540-7748
DOI:10.1085/jgp.200910290