Loading…

Microglial responses to dopamine in a cell culture model of Parkinson's disease

Abstract Activated microglia appear to selectively attack dopamine (DA) neurons in the Parkinson's disease (PD) substantia nigra. We investigated potential mechanisms using culture models. As targets, human SH-SY5Y cells were left undifferentiated (UNDIFF) or were differentiated with retinoic a...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of aging 2009-11, Vol.30 (11), p.1805-1817
Main Authors: Mastroeni, Diego, Grover, Andrew, Leonard, Brian, Joyce, Jeffrey N, Coleman, Paul D, Kozik, Brooke, Bellinger, Denise L, Rogers, Joseph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Activated microglia appear to selectively attack dopamine (DA) neurons in the Parkinson's disease (PD) substantia nigra. We investigated potential mechanisms using culture models. As targets, human SH-SY5Y cells were left undifferentiated (UNDIFF) or were differentiated with retinoic acid (RA) or RA plus brain-derived neurotrophic factor (RA/BDNF). RA/BDNF-treated cells were immunoreactive for tyrosine hydroxylase and the DA transporter, took up exogenous DA, and released DA after K+ stimulation. Undifferentiated and RA-treated cells lacked these characteristics of a DA phenotype. Co-culture of target cells with human elderly microglia resulted in elevated toxicity in DA phenotype (RA/BDNF) cells. Lipopolysaccharide (LPS) plus K+ -stimulated DA release enhanced toxicity by 500-fold. DA induced microglial chemotaxis in Boyden chambers. Spiperone inhibited this effect. Cultured human elderly microglia expressed mRNAs for D1–D4 but not D5 DA receptors. The microglia, as well as PD microglia in situ, were also immunoreactive for D1–D4 but not D5 DA receptors. These findings demonstrate that activated microglia express DA receptors, and suggest that this mechanism may play a role in the selective vulnerability of DA neurons in PD.
ISSN:0197-4580
1558-1497
DOI:10.1016/j.neurobiolaging.2008.01.001