Loading…

Designer DNA Nanoarchitectures

Naturally existing biological systems, from the simplest unicellular diatom to the most sophisticated organ such as the human brain, are functional self-assembled architectures. Scientists have long been dreaming about building artificial nanostructures that can mimic such elegance in nature. Struct...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2009-03, Vol.48 (8), p.1663-1674
Main Authors: Lin, Chenxiang, Liu, Yan, Yan, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Naturally existing biological systems, from the simplest unicellular diatom to the most sophisticated organ such as the human brain, are functional self-assembled architectures. Scientists have long been dreaming about building artificial nanostructures that can mimic such elegance in nature. Structural DNA nanotechnology, which uses DNA as a blueprint and building material to organize matter with nanometer precision, represents an appealing solution to this challenge. On the basis of the knowledge of helical DNA structure and Watson−Crick base pairing rules, scientists have constructed a number of DNA nanoarchitectures with a large variety of geometries, topologies, and periodicities with considerably high yields. Modified by functional groups, those DNA nanostructures can serve as scaffolds to control the positioning of other molecular species, which opens opportunities to study intermolecular synergies, such as protein−protein interactions, as well as to build artificial multicomponent nanomachines. In this review, we summarize the principle of DNA self-assembly, describe the exciting progress of structural DNA nanotechnology in recent years, and discuss the current frontier.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi802324w