Loading…

An Allosteric Mechanism for Inhibiting HIV-1 Integrase with a Small Molecule

HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmacology 2009-10, Vol.76 (4), p.824-832
Main Authors: Kessl, Jacques J., Eidahl, Jocelyn O., Shkriabai, Nikolozi, Zhao, Zhuojun, McKee, Christopher J., Hess, Sonja, Burke, Terrence R., Kvaratskhelia, Mamuka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-5c122b4937fe8e2cb117fd42398935d60c16f9bd047bc2a624433da18c8441983
cites cdi_FETCH-LOGICAL-c512t-5c122b4937fe8e2cb117fd42398935d60c16f9bd047bc2a624433da18c8441983
container_end_page 832
container_issue 4
container_start_page 824
container_title Molecular pharmacology
container_volume 76
creator Kessl, Jacques J.
Eidahl, Jocelyn O.
Shkriabai, Nikolozi
Zhao, Zhuojun
McKee, Christopher J.
Hess, Sonja
Burke, Terrence R.
Kvaratskhelia, Mamuka
description HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-l-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.
doi_str_mv 10.1124/mol.109.058883
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2769043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026895X24020492</els_id><sourcerecordid>19638533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-5c122b4937fe8e2cb117fd42398935d60c16f9bd047bc2a624433da18c8441983</originalsourceid><addsrcrecordid>eNp1kEtv3CAURlHUqplOu82yYtOlp1zANmwqjaI8RpqoizzUHcIY20TYjMBJlH8fKkdNu8iKK-75PtBB6ATIBoDyH2PwGyByQ0ohBDtCKygpFAQAPqAVIbQqhCx_H6PPKd0TArwU5BM6BlkxUTK2QvvthLfehzTb6Ay-smbQk0sj7kLEu2lwjZvd1OPL3V0B-WK2fdTJ4ic3D1jj61F7j6-Ct-bB2y_oY6d9sl9fzzW6PT-7Ob0s9r8udqfbfWFKoHNRGqC04ZLVnRWWmgag7lpOmRSSlW1FDFSdbFrC68ZQXVHOGWs1CCM4BynYGv1ceg8PzWhbY6c5aq8O0Y06Pqugnfp_M7lB9eFR0bqSJJet0WYpMDGkFG33NwtE_fGqstc8S7V4zYFv_774hr-KzMD3BRhcPzy5aNVh0HHUJvjQP6u6UlwJyjMnFs5mP4_ORpWMs5Oxbc6YWbXBvfeHF8sHk78</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Allosteric Mechanism for Inhibiting HIV-1 Integrase with a Small Molecule</title><source>Full-Text Journals in Chemistry (Open access)</source><creator>Kessl, Jacques J. ; Eidahl, Jocelyn O. ; Shkriabai, Nikolozi ; Zhao, Zhuojun ; McKee, Christopher J. ; Hess, Sonja ; Burke, Terrence R. ; Kvaratskhelia, Mamuka</creator><creatorcontrib>Kessl, Jacques J. ; Eidahl, Jocelyn O. ; Shkriabai, Nikolozi ; Zhao, Zhuojun ; McKee, Christopher J. ; Hess, Sonja ; Burke, Terrence R. ; Kvaratskhelia, Mamuka</creatorcontrib><description>HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-l-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.109.058883</identifier><identifier>PMID: 19638533</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Chromatography, Gel ; HIV Integrase - chemistry ; HIV Integrase - drug effects ; HIV Integrase - metabolism ; HIV Integrase Inhibitors - pharmacology ; Models, Molecular ; Molecular Sequence Data ; Peptides - chemistry ; Peptides - pharmacology ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><ispartof>Molecular pharmacology, 2009-10, Vol.76 (4), p.824-832</ispartof><rights>2009 American Society for Pharmacology and Experimental Therapeutics</rights><rights>U.S. Government work not protected by U.S. copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-5c122b4937fe8e2cb117fd42398935d60c16f9bd047bc2a624433da18c8441983</citedby><cites>FETCH-LOGICAL-c512t-5c122b4937fe8e2cb117fd42398935d60c16f9bd047bc2a624433da18c8441983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19638533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kessl, Jacques J.</creatorcontrib><creatorcontrib>Eidahl, Jocelyn O.</creatorcontrib><creatorcontrib>Shkriabai, Nikolozi</creatorcontrib><creatorcontrib>Zhao, Zhuojun</creatorcontrib><creatorcontrib>McKee, Christopher J.</creatorcontrib><creatorcontrib>Hess, Sonja</creatorcontrib><creatorcontrib>Burke, Terrence R.</creatorcontrib><creatorcontrib>Kvaratskhelia, Mamuka</creatorcontrib><title>An Allosteric Mechanism for Inhibiting HIV-1 Integrase with a Small Molecule</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-l-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.</description><subject>Amino Acid Sequence</subject><subject>Chromatography, Gel</subject><subject>HIV Integrase - chemistry</subject><subject>HIV Integrase - drug effects</subject><subject>HIV Integrase - metabolism</subject><subject>HIV Integrase Inhibitors - pharmacology</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacology</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEtv3CAURlHUqplOu82yYtOlp1zANmwqjaI8RpqoizzUHcIY20TYjMBJlH8fKkdNu8iKK-75PtBB6ATIBoDyH2PwGyByQ0ohBDtCKygpFAQAPqAVIbQqhCx_H6PPKd0TArwU5BM6BlkxUTK2QvvthLfehzTb6Ay-smbQk0sj7kLEu2lwjZvd1OPL3V0B-WK2fdTJ4ic3D1jj61F7j6-Ct-bB2y_oY6d9sl9fzzW6PT-7Ob0s9r8udqfbfWFKoHNRGqC04ZLVnRWWmgag7lpOmRSSlW1FDFSdbFrC68ZQXVHOGWs1CCM4BynYGv1ceg8PzWhbY6c5aq8O0Y06Pqugnfp_M7lB9eFR0bqSJJet0WYpMDGkFG33NwtE_fGqstc8S7V4zYFv_774hr-KzMD3BRhcPzy5aNVh0HHUJvjQP6u6UlwJyjMnFs5mP4_ORpWMs5Oxbc6YWbXBvfeHF8sHk78</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Kessl, Jacques J.</creator><creator>Eidahl, Jocelyn O.</creator><creator>Shkriabai, Nikolozi</creator><creator>Zhao, Zhuojun</creator><creator>McKee, Christopher J.</creator><creator>Hess, Sonja</creator><creator>Burke, Terrence R.</creator><creator>Kvaratskhelia, Mamuka</creator><general>Elsevier Inc</general><general>American Society for Pharmacology and Experimental Therapeutics</general><general>The American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>200910</creationdate><title>An Allosteric Mechanism for Inhibiting HIV-1 Integrase with a Small Molecule</title><author>Kessl, Jacques J. ; Eidahl, Jocelyn O. ; Shkriabai, Nikolozi ; Zhao, Zhuojun ; McKee, Christopher J. ; Hess, Sonja ; Burke, Terrence R. ; Kvaratskhelia, Mamuka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-5c122b4937fe8e2cb117fd42398935d60c16f9bd047bc2a624433da18c8441983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Chromatography, Gel</topic><topic>HIV Integrase - chemistry</topic><topic>HIV Integrase - drug effects</topic><topic>HIV Integrase - metabolism</topic><topic>HIV Integrase Inhibitors - pharmacology</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacology</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kessl, Jacques J.</creatorcontrib><creatorcontrib>Eidahl, Jocelyn O.</creatorcontrib><creatorcontrib>Shkriabai, Nikolozi</creatorcontrib><creatorcontrib>Zhao, Zhuojun</creatorcontrib><creatorcontrib>McKee, Christopher J.</creatorcontrib><creatorcontrib>Hess, Sonja</creatorcontrib><creatorcontrib>Burke, Terrence R.</creatorcontrib><creatorcontrib>Kvaratskhelia, Mamuka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessl, Jacques J.</au><au>Eidahl, Jocelyn O.</au><au>Shkriabai, Nikolozi</au><au>Zhao, Zhuojun</au><au>McKee, Christopher J.</au><au>Hess, Sonja</au><au>Burke, Terrence R.</au><au>Kvaratskhelia, Mamuka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Allosteric Mechanism for Inhibiting HIV-1 Integrase with a Small Molecule</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2009-10</date><risdate>2009</risdate><volume>76</volume><issue>4</issue><spage>824</spage><epage>832</epage><pages>824-832</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-l-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19638533</pmid><doi>10.1124/mol.109.058883</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-895X
ispartof Molecular pharmacology, 2009-10, Vol.76 (4), p.824-832
issn 0026-895X
1521-0111
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2769043
source Full-Text Journals in Chemistry (Open access)
subjects Amino Acid Sequence
Chromatography, Gel
HIV Integrase - chemistry
HIV Integrase - drug effects
HIV Integrase - metabolism
HIV Integrase Inhibitors - pharmacology
Models, Molecular
Molecular Sequence Data
Peptides - chemistry
Peptides - pharmacology
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
title An Allosteric Mechanism for Inhibiting HIV-1 Integrase with a Small Molecule
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Allosteric%20Mechanism%20for%20Inhibiting%20HIV-1%20Integrase%20with%20a%20Small%20Molecule&rft.jtitle=Molecular%20pharmacology&rft.au=Kessl,%20Jacques%20J.&rft.date=2009-10&rft.volume=76&rft.issue=4&rft.spage=824&rft.epage=832&rft.pages=824-832&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.109.058883&rft_dat=%3Cpubmed_cross%3E19638533%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-5c122b4937fe8e2cb117fd42398935d60c16f9bd047bc2a624433da18c8441983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19638533&rfr_iscdi=true