Loading…

Phosphorylation of Caveolin-1 Regulates Oxidant–Induced Pulmonary Vascular Permeability via Paracellular and Transcellular Pathways

RATIONALE:Oxidants are important signaling molecules known to increase endothelial permeability, although the mechanisms underlying permeability regulation are not clear. OBJECTIVE:To define the role of caveolin-1 in the mechanism of oxidant-induced pulmonary vascular hyperpermeability and edema for...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 2009-09, Vol.105 (7), p.676-685
Main Authors: Sun, Yu, Hu, Guochang, Zhang, Xiumei, Minshall, Richard D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5923-cf53497050965eb14812118dbd5d23323d0ab3d077485c041ef3fa2af8ef0b073
cites cdi_FETCH-LOGICAL-c5923-cf53497050965eb14812118dbd5d23323d0ab3d077485c041ef3fa2af8ef0b073
container_end_page 685
container_issue 7
container_start_page 676
container_title Circulation research
container_volume 105
creator Sun, Yu
Hu, Guochang
Zhang, Xiumei
Minshall, Richard D
description RATIONALE:Oxidants are important signaling molecules known to increase endothelial permeability, although the mechanisms underlying permeability regulation are not clear. OBJECTIVE:To define the role of caveolin-1 in the mechanism of oxidant-induced pulmonary vascular hyperpermeability and edema formation. METHODS AND RESULTS:Using genetic approaches, we show that phosphorylation of caveolin-1 Tyr14 is required for increased pulmonary microvessel permeability induced by hydrogen peroxide (H2O2). Caveolin-1–deficient mice (cav-1) were resistant to H2O2-induced pulmonary vascular albumin hyperpermeability and edema formation. Furthermore, the vascular hyperpermeability response to H2O2 was completely rescued by expression of caveolin-1 in cav-1 mouse lung microvessels but was not restored by the phosphorylation-defective caveolin-1 mutant. The increase in caveolin-1 phosphorylation induced by H2O2 was dose-dependently coupled to both increased I-albumin transcytosis and decreased transendothelial electric resistance in pulmonary endothelial cells. Phosphorylation of caveolin-1 following H2O2 exposure resulted in the dissociation of vascular endothelial cadherin/β-catenin complexes and resultant endothelial barrier disruption. CONCLUSIONS:Caveolin-1 phosphorylation–dependent signaling plays a crucial role in oxidative stress-induced pulmonary vascular hyperpermeability via transcellular and paracellular pathways. Thus, caveolin-1 phosphorylation may be an important therapeutic target for limiting oxidant-mediated vascular hyperpermeability, protein-rich edema formation, and acute lung injury.
doi_str_mv 10.1161/CIRCRESAHA.109.201673
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2776728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19713536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5923-cf53497050965eb14812118dbd5d23323d0ab3d077485c041ef3fa2af8ef0b073</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPhEUDesMzgnziON0ijqLQjVWo0FLbRTeI0Bk88spMZZtcNT8Ab8iS4ndEUVmxs6Z7v3Gvfg9BbSuaUZvRDsVwVq4vPi6vFnBI1Z4Rmkj9DMypYmqRC0udoRghRieScnKFXIXwjhKacqZfojCpJueDZDP0sexc2vfN7C6NxA3YdLmCrnTVDQvFK301R0AHf_DAtDOPv-1_LoZ0a3eJysms3gN_jrxCaiHlcar_WUBtrxj3eGsAleGi0tY8qDC2-9TCEU6WEsd_BPrxGLzqwQb853ufoy6eL2-Iqub65XBaL66QRivGk6QRPlSSCqEzomqY5ZZTmbd2KlnHOeEugjoeUaS4aklLd8Q4YdLnuSE0kP0cfD303U73WbaOH0YOtNt6s4z8qB6b6VxlMX925bcWkzCTLYwNxaNB4F4LX3clLSfWQS_WUSyyp6pBL9L37e_CT6xhEBN4fgbhLsF1cU2PCiWNUZSnLVeTUgds5O2ofvttpp33Va7Bj_59H_AHD5K42</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phosphorylation of Caveolin-1 Regulates Oxidant–Induced Pulmonary Vascular Permeability via Paracellular and Transcellular Pathways</title><source>Freely Accessible Science Journals</source><creator>Sun, Yu ; Hu, Guochang ; Zhang, Xiumei ; Minshall, Richard D</creator><creatorcontrib>Sun, Yu ; Hu, Guochang ; Zhang, Xiumei ; Minshall, Richard D</creatorcontrib><description>RATIONALE:Oxidants are important signaling molecules known to increase endothelial permeability, although the mechanisms underlying permeability regulation are not clear. OBJECTIVE:To define the role of caveolin-1 in the mechanism of oxidant-induced pulmonary vascular hyperpermeability and edema formation. METHODS AND RESULTS:Using genetic approaches, we show that phosphorylation of caveolin-1 Tyr14 is required for increased pulmonary microvessel permeability induced by hydrogen peroxide (H2O2). Caveolin-1–deficient mice (cav-1) were resistant to H2O2-induced pulmonary vascular albumin hyperpermeability and edema formation. Furthermore, the vascular hyperpermeability response to H2O2 was completely rescued by expression of caveolin-1 in cav-1 mouse lung microvessels but was not restored by the phosphorylation-defective caveolin-1 mutant. The increase in caveolin-1 phosphorylation induced by H2O2 was dose-dependently coupled to both increased I-albumin transcytosis and decreased transendothelial electric resistance in pulmonary endothelial cells. Phosphorylation of caveolin-1 following H2O2 exposure resulted in the dissociation of vascular endothelial cadherin/β-catenin complexes and resultant endothelial barrier disruption. CONCLUSIONS:Caveolin-1 phosphorylation–dependent signaling plays a crucial role in oxidative stress-induced pulmonary vascular hyperpermeability via transcellular and paracellular pathways. Thus, caveolin-1 phosphorylation may be an important therapeutic target for limiting oxidant-mediated vascular hyperpermeability, protein-rich edema formation, and acute lung injury.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.109.201673</identifier><identifier>PMID: 19713536</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Albumins - metabolism ; Animals ; Antigens, CD - metabolism ; beta Catenin - metabolism ; Biological and medical sciences ; Cadherins - metabolism ; Capillary Permeability - drug effects ; Caveolin 1 - deficiency ; Caveolin 1 - genetics ; Caveolin 1 - metabolism ; Cells, Cultured ; Dose-Response Relationship, Drug ; Endocytosis ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Fundamental and applied biological sciences. Psychology ; Hydrogen Peroxide - toxicity ; Intercellular Junctions - metabolism ; Lung - blood supply ; Mice ; Mice, Knockout ; Microvessels - drug effects ; Microvessels - metabolism ; Oxidants - toxicity ; Oxidative Stress - drug effects ; Phosphorylation ; Proto-Oncogene Proteins c-abl - metabolism ; Pulmonary Edema - metabolism ; Pulmonary Edema - prevention &amp; control ; Rats ; Signal Transduction - drug effects ; src-Family Kinases - metabolism ; Time Factors ; Tyrosine ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2009-09, Vol.105 (7), p.676-685</ispartof><rights>2009 American Heart Association, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5923-cf53497050965eb14812118dbd5d23323d0ab3d077485c041ef3fa2af8ef0b073</citedby><cites>FETCH-LOGICAL-c5923-cf53497050965eb14812118dbd5d23323d0ab3d077485c041ef3fa2af8ef0b073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21964289$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19713536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Hu, Guochang</creatorcontrib><creatorcontrib>Zhang, Xiumei</creatorcontrib><creatorcontrib>Minshall, Richard D</creatorcontrib><title>Phosphorylation of Caveolin-1 Regulates Oxidant–Induced Pulmonary Vascular Permeability via Paracellular and Transcellular Pathways</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:Oxidants are important signaling molecules known to increase endothelial permeability, although the mechanisms underlying permeability regulation are not clear. OBJECTIVE:To define the role of caveolin-1 in the mechanism of oxidant-induced pulmonary vascular hyperpermeability and edema formation. METHODS AND RESULTS:Using genetic approaches, we show that phosphorylation of caveolin-1 Tyr14 is required for increased pulmonary microvessel permeability induced by hydrogen peroxide (H2O2). Caveolin-1–deficient mice (cav-1) were resistant to H2O2-induced pulmonary vascular albumin hyperpermeability and edema formation. Furthermore, the vascular hyperpermeability response to H2O2 was completely rescued by expression of caveolin-1 in cav-1 mouse lung microvessels but was not restored by the phosphorylation-defective caveolin-1 mutant. The increase in caveolin-1 phosphorylation induced by H2O2 was dose-dependently coupled to both increased I-albumin transcytosis and decreased transendothelial electric resistance in pulmonary endothelial cells. Phosphorylation of caveolin-1 following H2O2 exposure resulted in the dissociation of vascular endothelial cadherin/β-catenin complexes and resultant endothelial barrier disruption. CONCLUSIONS:Caveolin-1 phosphorylation–dependent signaling plays a crucial role in oxidative stress-induced pulmonary vascular hyperpermeability via transcellular and paracellular pathways. Thus, caveolin-1 phosphorylation may be an important therapeutic target for limiting oxidant-mediated vascular hyperpermeability, protein-rich edema formation, and acute lung injury.</description><subject>Albumins - metabolism</subject><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>beta Catenin - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cadherins - metabolism</subject><subject>Capillary Permeability - drug effects</subject><subject>Caveolin 1 - deficiency</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - metabolism</subject><subject>Cells, Cultured</subject><subject>Dose-Response Relationship, Drug</subject><subject>Endocytosis</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen Peroxide - toxicity</subject><subject>Intercellular Junctions - metabolism</subject><subject>Lung - blood supply</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microvessels - drug effects</subject><subject>Microvessels - metabolism</subject><subject>Oxidants - toxicity</subject><subject>Oxidative Stress - drug effects</subject><subject>Phosphorylation</subject><subject>Proto-Oncogene Proteins c-abl - metabolism</subject><subject>Pulmonary Edema - metabolism</subject><subject>Pulmonary Edema - prevention &amp; control</subject><subject>Rats</subject><subject>Signal Transduction - drug effects</subject><subject>src-Family Kinases - metabolism</subject><subject>Time Factors</subject><subject>Tyrosine</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokPhEUDesMzgnziON0ijqLQjVWo0FLbRTeI0Bk88spMZZtcNT8Ab8iS4ndEUVmxs6Z7v3Gvfg9BbSuaUZvRDsVwVq4vPi6vFnBI1Z4Rmkj9DMypYmqRC0udoRghRieScnKFXIXwjhKacqZfojCpJueDZDP0sexc2vfN7C6NxA3YdLmCrnTVDQvFK301R0AHf_DAtDOPv-1_LoZ0a3eJysms3gN_jrxCaiHlcar_WUBtrxj3eGsAleGi0tY8qDC2-9TCEU6WEsd_BPrxGLzqwQb853ufoy6eL2-Iqub65XBaL66QRivGk6QRPlSSCqEzomqY5ZZTmbd2KlnHOeEugjoeUaS4aklLd8Q4YdLnuSE0kP0cfD303U73WbaOH0YOtNt6s4z8qB6b6VxlMX925bcWkzCTLYwNxaNB4F4LX3clLSfWQS_WUSyyp6pBL9L37e_CT6xhEBN4fgbhLsF1cU2PCiWNUZSnLVeTUgds5O2ofvttpp33Va7Bj_59H_AHD5K42</recordid><startdate>20090925</startdate><enddate>20090925</enddate><creator>Sun, Yu</creator><creator>Hu, Guochang</creator><creator>Zhang, Xiumei</creator><creator>Minshall, Richard D</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090925</creationdate><title>Phosphorylation of Caveolin-1 Regulates Oxidant–Induced Pulmonary Vascular Permeability via Paracellular and Transcellular Pathways</title><author>Sun, Yu ; Hu, Guochang ; Zhang, Xiumei ; Minshall, Richard D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5923-cf53497050965eb14812118dbd5d23323d0ab3d077485c041ef3fa2af8ef0b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Albumins - metabolism</topic><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>beta Catenin - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cadherins - metabolism</topic><topic>Capillary Permeability - drug effects</topic><topic>Caveolin 1 - deficiency</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - metabolism</topic><topic>Cells, Cultured</topic><topic>Dose-Response Relationship, Drug</topic><topic>Endocytosis</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen Peroxide - toxicity</topic><topic>Intercellular Junctions - metabolism</topic><topic>Lung - blood supply</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microvessels - drug effects</topic><topic>Microvessels - metabolism</topic><topic>Oxidants - toxicity</topic><topic>Oxidative Stress - drug effects</topic><topic>Phosphorylation</topic><topic>Proto-Oncogene Proteins c-abl - metabolism</topic><topic>Pulmonary Edema - metabolism</topic><topic>Pulmonary Edema - prevention &amp; control</topic><topic>Rats</topic><topic>Signal Transduction - drug effects</topic><topic>src-Family Kinases - metabolism</topic><topic>Time Factors</topic><topic>Tyrosine</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Hu, Guochang</creatorcontrib><creatorcontrib>Zhang, Xiumei</creatorcontrib><creatorcontrib>Minshall, Richard D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yu</au><au>Hu, Guochang</au><au>Zhang, Xiumei</au><au>Minshall, Richard D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation of Caveolin-1 Regulates Oxidant–Induced Pulmonary Vascular Permeability via Paracellular and Transcellular Pathways</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2009-09-25</date><risdate>2009</risdate><volume>105</volume><issue>7</issue><spage>676</spage><epage>685</epage><pages>676-685</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>RATIONALE:Oxidants are important signaling molecules known to increase endothelial permeability, although the mechanisms underlying permeability regulation are not clear. OBJECTIVE:To define the role of caveolin-1 in the mechanism of oxidant-induced pulmonary vascular hyperpermeability and edema formation. METHODS AND RESULTS:Using genetic approaches, we show that phosphorylation of caveolin-1 Tyr14 is required for increased pulmonary microvessel permeability induced by hydrogen peroxide (H2O2). Caveolin-1–deficient mice (cav-1) were resistant to H2O2-induced pulmonary vascular albumin hyperpermeability and edema formation. Furthermore, the vascular hyperpermeability response to H2O2 was completely rescued by expression of caveolin-1 in cav-1 mouse lung microvessels but was not restored by the phosphorylation-defective caveolin-1 mutant. The increase in caveolin-1 phosphorylation induced by H2O2 was dose-dependently coupled to both increased I-albumin transcytosis and decreased transendothelial electric resistance in pulmonary endothelial cells. Phosphorylation of caveolin-1 following H2O2 exposure resulted in the dissociation of vascular endothelial cadherin/β-catenin complexes and resultant endothelial barrier disruption. CONCLUSIONS:Caveolin-1 phosphorylation–dependent signaling plays a crucial role in oxidative stress-induced pulmonary vascular hyperpermeability via transcellular and paracellular pathways. Thus, caveolin-1 phosphorylation may be an important therapeutic target for limiting oxidant-mediated vascular hyperpermeability, protein-rich edema formation, and acute lung injury.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>19713536</pmid><doi>10.1161/CIRCRESAHA.109.201673</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2009-09, Vol.105 (7), p.676-685
issn 0009-7330
1524-4571
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2776728
source Freely Accessible Science Journals
subjects Albumins - metabolism
Animals
Antigens, CD - metabolism
beta Catenin - metabolism
Biological and medical sciences
Cadherins - metabolism
Capillary Permeability - drug effects
Caveolin 1 - deficiency
Caveolin 1 - genetics
Caveolin 1 - metabolism
Cells, Cultured
Dose-Response Relationship, Drug
Endocytosis
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Fundamental and applied biological sciences. Psychology
Hydrogen Peroxide - toxicity
Intercellular Junctions - metabolism
Lung - blood supply
Mice
Mice, Knockout
Microvessels - drug effects
Microvessels - metabolism
Oxidants - toxicity
Oxidative Stress - drug effects
Phosphorylation
Proto-Oncogene Proteins c-abl - metabolism
Pulmonary Edema - metabolism
Pulmonary Edema - prevention & control
Rats
Signal Transduction - drug effects
src-Family Kinases - metabolism
Time Factors
Tyrosine
Vertebrates: cardiovascular system
title Phosphorylation of Caveolin-1 Regulates Oxidant–Induced Pulmonary Vascular Permeability via Paracellular and Transcellular Pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20of%20Caveolin-1%20Regulates%20Oxidant%E2%80%93Induced%20Pulmonary%20Vascular%20Permeability%20via%20Paracellular%20and%20Transcellular%20Pathways&rft.jtitle=Circulation%20research&rft.au=Sun,%20Yu&rft.date=2009-09-25&rft.volume=105&rft.issue=7&rft.spage=676&rft.epage=685&rft.pages=676-685&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/CIRCRESAHA.109.201673&rft_dat=%3Cpubmed_cross%3E19713536%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5923-cf53497050965eb14812118dbd5d23323d0ab3d077485c041ef3fa2af8ef0b073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19713536&rfr_iscdi=true