Loading…
Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes
Magi 4, now renamed δ-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to δ-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (NaV...
Saved in:
Published in: | The Journal of biological chemistry 2009-09, Vol.284 (36), p.24568-24582 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-fdb003ff63e248cdbd0451fd80e410de0aa85ccbb05603aa7aa0224e35d22723 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-fdb003ff63e248cdbd0451fd80e410de0aa85ccbb05603aa7aa0224e35d22723 |
container_end_page | 24582 |
container_issue | 36 |
container_start_page | 24568 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Yamaji, Nahoko Little, Michelle J. Nishio, Hideki Billen, Bert Villegas, Elba Nishiuchi, Yuji Tytgat, Jan Nicholson, Graham M. Corzo, Gerardo |
description | Magi 4, now renamed δ-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to δ-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (NaV) channels but, unlike δ-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in NaV channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect NaV channel subtypes showing that δ-hexatoxin-Mg1a selectively slows channel inactivation of mammalian NaV1.1, NaV1.3, and NaV1.6 but more importantly shows higher affinity for insect NaV1 (para) channels. Consequently, δ-hexatoxin-Mg1a induces tonic repetitive firing of nerve impulses in insect neurons accompanied by plateau potentials. In addition, we have chemically synthesized and folded δ-hexatoxin-Mg1a, ascertained the bonding pattern of the four disulfides, and determined its three-dimensional solution structure using NMR spectroscopy. Despite modest sequence homology, we show that key residues important for the activity of scorpion α-toxins and δ-hexatoxins are distributed in a topologically similar manner in δ-hexatoxin-Mg1a. However, subtle differences in the toxin surfaces are important for the novel selectivity of δ-hexatoxin-Mg1a for certain mammalian and insect NaV channel subtypes. As such, δ-hexatoxin-Mg1a provides us with a specific tool with which to study channel structure and function and determinants for phylum- and tissue-specific activity. |
doi_str_mv | 10.1074/jbc.M109.030841 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819548220</els_id><sourcerecordid>19592486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-fdb003ff63e248cdbd0451fd80e410de0aa85ccbb05603aa7aa0224e35d22723</originalsourceid><addsrcrecordid>eNp1kctu1DAUhiMEokNhzQ78AM302M51g4RGUCoVgZQBsbMc-2TiKhOPbGcg79FH4Tl4Jjyk4rLAGy_8nf_X8ZckzymsKZTZ5W2r1u8p1GvgUGX0QbKiUPGU5_TLw2QFwGhas7w6S554fwvxZDV9nJzROq9ZVhWr5K6Zx9CjN_6CNHaYgrEjaYKbVJgcXhA5avKxn4dpTxocUAVzNGEmtiOSNAej0ZEf39Ot_WZGsu1lIM1gv3pyPcoTKn_FRbg5oDKdUeSzHYLcYbqTAXVs1CYmb3o5jjiQZmrDfED_NHnUycHjs_v7PNm-fbPdvEtvPlxdb17fpCor8pB2ugXgXVdwjMso3WrIctrpCjCjoBGkrHKl2hbyAriUpZTAWIY814yVjJ8nr5bYw9TuUSscg5ODODizl24WVhrx78toerGzR8HKikFWxoDLJUA5673D7vcsBXHyI6IfcfIjFj9x4sXflX_4eyEReLkAnbRC7pzx4lPDgHKgRck5OxH1QmD8maNBJ7wyOCrUxkU_Qlvz3_qfiXKtqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Yamaji, Nahoko ; Little, Michelle J. ; Nishio, Hideki ; Billen, Bert ; Villegas, Elba ; Nishiuchi, Yuji ; Tytgat, Jan ; Nicholson, Graham M. ; Corzo, Gerardo</creator><creatorcontrib>Yamaji, Nahoko ; Little, Michelle J. ; Nishio, Hideki ; Billen, Bert ; Villegas, Elba ; Nishiuchi, Yuji ; Tytgat, Jan ; Nicholson, Graham M. ; Corzo, Gerardo</creatorcontrib><description>Magi 4, now renamed δ-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to δ-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (NaV) channels but, unlike δ-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in NaV channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect NaV channel subtypes showing that δ-hexatoxin-Mg1a selectively slows channel inactivation of mammalian NaV1.1, NaV1.3, and NaV1.6 but more importantly shows higher affinity for insect NaV1 (para) channels. Consequently, δ-hexatoxin-Mg1a induces tonic repetitive firing of nerve impulses in insect neurons accompanied by plateau potentials. In addition, we have chemically synthesized and folded δ-hexatoxin-Mg1a, ascertained the bonding pattern of the four disulfides, and determined its three-dimensional solution structure using NMR spectroscopy. Despite modest sequence homology, we show that key residues important for the activity of scorpion α-toxins and δ-hexatoxins are distributed in a topologically similar manner in δ-hexatoxin-Mg1a. However, subtle differences in the toxin surfaces are important for the novel selectivity of δ-hexatoxin-Mg1a for certain mammalian and insect NaV channel subtypes. As such, δ-hexatoxin-Mg1a provides us with a specific tool with which to study channel structure and function and determinants for phylum- and tissue-specific activity.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.030841</identifier><identifier>PMID: 19592486</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Insect Proteins - antagonists & inhibitors ; Insect Proteins - metabolism ; Mechanisms of Signal Transduction ; NAV1.1 Voltage-Gated Sodium Channel ; NAV1.3 Voltage-Gated Sodium Channel ; NAV1.6 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins - antagonists & inhibitors ; Nerve Tissue Proteins - metabolism ; Neurons - metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Periplaneta - metabolism ; Protein Structure, Tertiary ; Rats ; Sodium Channels - metabolism ; Spider Venoms - chemistry ; Spider Venoms - pharmacology ; Xenopus laevis</subject><ispartof>The Journal of biological chemistry, 2009-09, Vol.284 (36), p.24568-24582</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-fdb003ff63e248cdbd0451fd80e410de0aa85ccbb05603aa7aa0224e35d22723</citedby><cites>FETCH-LOGICAL-c465t-fdb003ff63e248cdbd0451fd80e410de0aa85ccbb05603aa7aa0224e35d22723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782047/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819548220$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45779,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19592486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamaji, Nahoko</creatorcontrib><creatorcontrib>Little, Michelle J.</creatorcontrib><creatorcontrib>Nishio, Hideki</creatorcontrib><creatorcontrib>Billen, Bert</creatorcontrib><creatorcontrib>Villegas, Elba</creatorcontrib><creatorcontrib>Nishiuchi, Yuji</creatorcontrib><creatorcontrib>Tytgat, Jan</creatorcontrib><creatorcontrib>Nicholson, Graham M.</creatorcontrib><creatorcontrib>Corzo, Gerardo</creatorcontrib><title>Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Magi 4, now renamed δ-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to δ-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (NaV) channels but, unlike δ-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in NaV channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect NaV channel subtypes showing that δ-hexatoxin-Mg1a selectively slows channel inactivation of mammalian NaV1.1, NaV1.3, and NaV1.6 but more importantly shows higher affinity for insect NaV1 (para) channels. Consequently, δ-hexatoxin-Mg1a induces tonic repetitive firing of nerve impulses in insect neurons accompanied by plateau potentials. In addition, we have chemically synthesized and folded δ-hexatoxin-Mg1a, ascertained the bonding pattern of the four disulfides, and determined its three-dimensional solution structure using NMR spectroscopy. Despite modest sequence homology, we show that key residues important for the activity of scorpion α-toxins and δ-hexatoxins are distributed in a topologically similar manner in δ-hexatoxin-Mg1a. However, subtle differences in the toxin surfaces are important for the novel selectivity of δ-hexatoxin-Mg1a for certain mammalian and insect NaV channel subtypes. As such, δ-hexatoxin-Mg1a provides us with a specific tool with which to study channel structure and function and determinants for phylum- and tissue-specific activity.</description><subject>Animals</subject><subject>Insect Proteins - antagonists & inhibitors</subject><subject>Insect Proteins - metabolism</subject><subject>Mechanisms of Signal Transduction</subject><subject>NAV1.1 Voltage-Gated Sodium Channel</subject><subject>NAV1.3 Voltage-Gated Sodium Channel</subject><subject>NAV1.6 Voltage-Gated Sodium Channel</subject><subject>Nerve Tissue Proteins - antagonists & inhibitors</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - metabolism</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Periplaneta - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Rats</subject><subject>Sodium Channels - metabolism</subject><subject>Spider Venoms - chemistry</subject><subject>Spider Venoms - pharmacology</subject><subject>Xenopus laevis</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhiMEokNhzQ78AM302M51g4RGUCoVgZQBsbMc-2TiKhOPbGcg79FH4Tl4Jjyk4rLAGy_8nf_X8ZckzymsKZTZ5W2r1u8p1GvgUGX0QbKiUPGU5_TLw2QFwGhas7w6S554fwvxZDV9nJzROq9ZVhWr5K6Zx9CjN_6CNHaYgrEjaYKbVJgcXhA5avKxn4dpTxocUAVzNGEmtiOSNAej0ZEf39Ot_WZGsu1lIM1gv3pyPcoTKn_FRbg5oDKdUeSzHYLcYbqTAXVs1CYmb3o5jjiQZmrDfED_NHnUycHjs_v7PNm-fbPdvEtvPlxdb17fpCor8pB2ugXgXVdwjMso3WrIctrpCjCjoBGkrHKl2hbyAriUpZTAWIY814yVjJ8nr5bYw9TuUSscg5ODODizl24WVhrx78toerGzR8HKikFWxoDLJUA5673D7vcsBXHyI6IfcfIjFj9x4sXflX_4eyEReLkAnbRC7pzx4lPDgHKgRck5OxH1QmD8maNBJ7wyOCrUxkU_Qlvz3_qfiXKtqA</recordid><startdate>20090904</startdate><enddate>20090904</enddate><creator>Yamaji, Nahoko</creator><creator>Little, Michelle J.</creator><creator>Nishio, Hideki</creator><creator>Billen, Bert</creator><creator>Villegas, Elba</creator><creator>Nishiuchi, Yuji</creator><creator>Tytgat, Jan</creator><creator>Nicholson, Graham M.</creator><creator>Corzo, Gerardo</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090904</creationdate><title>Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes</title><author>Yamaji, Nahoko ; Little, Michelle J. ; Nishio, Hideki ; Billen, Bert ; Villegas, Elba ; Nishiuchi, Yuji ; Tytgat, Jan ; Nicholson, Graham M. ; Corzo, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-fdb003ff63e248cdbd0451fd80e410de0aa85ccbb05603aa7aa0224e35d22723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Insect Proteins - antagonists & inhibitors</topic><topic>Insect Proteins - metabolism</topic><topic>Mechanisms of Signal Transduction</topic><topic>NAV1.1 Voltage-Gated Sodium Channel</topic><topic>NAV1.3 Voltage-Gated Sodium Channel</topic><topic>NAV1.6 Voltage-Gated Sodium Channel</topic><topic>Nerve Tissue Proteins - antagonists & inhibitors</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - metabolism</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Periplaneta - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Rats</topic><topic>Sodium Channels - metabolism</topic><topic>Spider Venoms - chemistry</topic><topic>Spider Venoms - pharmacology</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaji, Nahoko</creatorcontrib><creatorcontrib>Little, Michelle J.</creatorcontrib><creatorcontrib>Nishio, Hideki</creatorcontrib><creatorcontrib>Billen, Bert</creatorcontrib><creatorcontrib>Villegas, Elba</creatorcontrib><creatorcontrib>Nishiuchi, Yuji</creatorcontrib><creatorcontrib>Tytgat, Jan</creatorcontrib><creatorcontrib>Nicholson, Graham M.</creatorcontrib><creatorcontrib>Corzo, Gerardo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaji, Nahoko</au><au>Little, Michelle J.</au><au>Nishio, Hideki</au><au>Billen, Bert</au><au>Villegas, Elba</au><au>Nishiuchi, Yuji</au><au>Tytgat, Jan</au><au>Nicholson, Graham M.</au><au>Corzo, Gerardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-09-04</date><risdate>2009</risdate><volume>284</volume><issue>36</issue><spage>24568</spage><epage>24582</epage><pages>24568-24582</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Magi 4, now renamed δ-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to δ-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (NaV) channels but, unlike δ-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in NaV channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect NaV channel subtypes showing that δ-hexatoxin-Mg1a selectively slows channel inactivation of mammalian NaV1.1, NaV1.3, and NaV1.6 but more importantly shows higher affinity for insect NaV1 (para) channels. Consequently, δ-hexatoxin-Mg1a induces tonic repetitive firing of nerve impulses in insect neurons accompanied by plateau potentials. In addition, we have chemically synthesized and folded δ-hexatoxin-Mg1a, ascertained the bonding pattern of the four disulfides, and determined its three-dimensional solution structure using NMR spectroscopy. Despite modest sequence homology, we show that key residues important for the activity of scorpion α-toxins and δ-hexatoxins are distributed in a topologically similar manner in δ-hexatoxin-Mg1a. However, subtle differences in the toxin surfaces are important for the novel selectivity of δ-hexatoxin-Mg1a for certain mammalian and insect NaV channel subtypes. As such, δ-hexatoxin-Mg1a provides us with a specific tool with which to study channel structure and function and determinants for phylum- and tissue-specific activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19592486</pmid><doi>10.1074/jbc.M109.030841</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-09, Vol.284 (36), p.24568-24582 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782047 |
source | Open Access: PubMed Central; ScienceDirect® |
subjects | Animals Insect Proteins - antagonists & inhibitors Insect Proteins - metabolism Mechanisms of Signal Transduction NAV1.1 Voltage-Gated Sodium Channel NAV1.3 Voltage-Gated Sodium Channel NAV1.6 Voltage-Gated Sodium Channel Nerve Tissue Proteins - antagonists & inhibitors Nerve Tissue Proteins - metabolism Neurons - metabolism Nuclear Magnetic Resonance, Biomolecular Periplaneta - metabolism Protein Structure, Tertiary Rats Sodium Channels - metabolism Spider Venoms - chemistry Spider Venoms - pharmacology Xenopus laevis |
title | Synthesis, Solution Structure, and Phylum Selectivity of a Spider δ-Toxin That Slows Inactivation of Specific Voltage-gated Sodium Channel Subtypes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20Solution%20Structure,%20and%20Phylum%20Selectivity%20of%20a%20Spider%20%CE%B4-Toxin%20That%20Slows%20Inactivation%20of%20Specific%20Voltage-gated%20Sodium%20Channel%20Subtypes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yamaji,%20Nahoko&rft.date=2009-09-04&rft.volume=284&rft.issue=36&rft.spage=24568&rft.epage=24582&rft.pages=24568-24582&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.030841&rft_dat=%3Cpubmed_cross%3E19592486%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-fdb003ff63e248cdbd0451fd80e410de0aa85ccbb05603aa7aa0224e35d22723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19592486&rfr_iscdi=true |