Loading…
Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation
In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose i...
Saved in:
Published in: | Molecular plant 2009-11, Vol.2 (6), p.1233-1246 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3 |
container_end_page | 1246 |
container_issue | 6 |
container_start_page | 1233 |
container_title | Molecular plant |
container_volume | 2 |
creator | Stettler, Michaela Eicke, Simona Mettler, Tabea Messerli, Gaëlle Hörtensteiner, Stefan Zeeman, Samuel C. |
description | In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation. |
doi_str_mv | 10.1093/mp/ssp093 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>32431142</cqvip_id><oup_id>10.1093/mp/ssp093</oup_id><els_id>S1674205214605013</els_id><sourcerecordid>734162450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</originalsourceid><addsrcrecordid>eNp9kluL1TAUhYMozjDOg39AggjiQ53m0rR5EWaOVzii4Pgc0mS3DadtOkl6xH9vpAcvID7tBfvLyiIrCD0m5UtSSnY1LVcxLlndQ-ekrmghG1Hfz1rUvKBlRc_QZYyuLSkjhIqSP0RnREouBKnP0eFm9Obg5h6nAfBHSLr1o4sT9h3-knQwA74JoA_Wf5vx5-DtalLEbsbXQbfO-iW6iPegjxDxbXB9DyHi3TD64JdRx4RfQx-01cn5-RF60OkxwuVpXqCvb9_c7t4X-0_vPuyu94WpeJkKCsLWlmjNsiDcSKOlpqxiRENjJXTCGmmlKJtOMCNY09TctoZIAFLRzrIL9GrzXdZ2AmtgTkGPaglu0uG78tqpvzezG1Tvj4rWDa2lyAbPTwbB360Qk5pcNDCOega_RlUzTgTlVZnJFxtpgo8xQPfrFlKqn_WoaVFbPZl98mes3-SpjAw82wC_Lv_1YRsG-Q2PDoKKxsFswLoAJinr3T9PPT0lHfzc3-XGVavNoXMjKEZ5_hucsh-Q0bkV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734162450</pqid></control><display><type>article</type><title>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</title><source>Elsevier</source><creator>Stettler, Michaela ; Eicke, Simona ; Mettler, Tabea ; Messerli, Gaëlle ; Hörtensteiner, Stefan ; Zeeman, Samuel C.</creator><creatorcontrib>Stettler, Michaela ; Eicke, Simona ; Mettler, Tabea ; Messerli, Gaëlle ; Hörtensteiner, Stefan ; Zeeman, Samuel C.</creatorcontrib><description>In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.</description><identifier>ISSN: 1674-2052</identifier><identifier>EISSN: 1752-9867</identifier><identifier>DOI: 10.1093/mp/ssp093</identifier><identifier>PMID: 19946617</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; autophagy ; Carbohydrate metabolism ; chloroplast biology ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Chloroplasts - ultrastructure ; Mutation ; Phenotype ; photosynthesis ; Photosynthesis - genetics ; Plant Leaves - growth & development ; senescence ; Starch - antagonists & inhibitors ; Starch - metabolism ; 代谢降解 ; 分解产物 ; 叶片叶绿体 ; 拟南芥 ; 淀粉 ; 触发器 ; 阻断</subject><ispartof>Molecular plant, 2009-11, Vol.2 (6), p.1233-1246</ispartof><rights>2009 The Authors. All rights reserved.</rights><rights>The Author 2009. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPP and IPPE, SIBS, CAS. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</citedby><cites>FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/90143B/90143B.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19946617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stettler, Michaela</creatorcontrib><creatorcontrib>Eicke, Simona</creatorcontrib><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Messerli, Gaëlle</creatorcontrib><creatorcontrib>Hörtensteiner, Stefan</creatorcontrib><creatorcontrib>Zeeman, Samuel C.</creatorcontrib><title>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</title><title>Molecular plant</title><addtitle>Molecular Plant</addtitle><description>In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>autophagy</subject><subject>Carbohydrate metabolism</subject><subject>chloroplast biology</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Chloroplasts - ultrastructure</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Plant Leaves - growth & development</subject><subject>senescence</subject><subject>Starch - antagonists & inhibitors</subject><subject>Starch - metabolism</subject><subject>代谢降解</subject><subject>分解产物</subject><subject>叶片叶绿体</subject><subject>拟南芥</subject><subject>淀粉</subject><subject>触发器</subject><subject>阻断</subject><issn>1674-2052</issn><issn>1752-9867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kluL1TAUhYMozjDOg39AggjiQ53m0rR5EWaOVzii4Pgc0mS3DadtOkl6xH9vpAcvID7tBfvLyiIrCD0m5UtSSnY1LVcxLlndQ-ekrmghG1Hfz1rUvKBlRc_QZYyuLSkjhIqSP0RnREouBKnP0eFm9Obg5h6nAfBHSLr1o4sT9h3-knQwA74JoA_Wf5vx5-DtalLEbsbXQbfO-iW6iPegjxDxbXB9DyHi3TD64JdRx4RfQx-01cn5-RF60OkxwuVpXqCvb9_c7t4X-0_vPuyu94WpeJkKCsLWlmjNsiDcSKOlpqxiRENjJXTCGmmlKJtOMCNY09TctoZIAFLRzrIL9GrzXdZ2AmtgTkGPaglu0uG78tqpvzezG1Tvj4rWDa2lyAbPTwbB360Qk5pcNDCOega_RlUzTgTlVZnJFxtpgo8xQPfrFlKqn_WoaVFbPZl98mes3-SpjAw82wC_Lv_1YRsG-Q2PDoKKxsFswLoAJinr3T9PPT0lHfzc3-XGVavNoXMjKEZ5_hucsh-Q0bkV</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Stettler, Michaela</creator><creator>Eicke, Simona</creator><creator>Mettler, Tabea</creator><creator>Messerli, Gaëlle</creator><creator>Hörtensteiner, Stefan</creator><creator>Zeeman, Samuel C.</creator><general>Elsevier Inc</general><general>Oxford University Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</title><author>Stettler, Michaela ; Eicke, Simona ; Mettler, Tabea ; Messerli, Gaëlle ; Hörtensteiner, Stefan ; Zeeman, Samuel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>autophagy</topic><topic>Carbohydrate metabolism</topic><topic>chloroplast biology</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Chloroplasts - ultrastructure</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Plant Leaves - growth & development</topic><topic>senescence</topic><topic>Starch - antagonists & inhibitors</topic><topic>Starch - metabolism</topic><topic>代谢降解</topic><topic>分解产物</topic><topic>叶片叶绿体</topic><topic>拟南芥</topic><topic>淀粉</topic><topic>触发器</topic><topic>阻断</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stettler, Michaela</creatorcontrib><creatorcontrib>Eicke, Simona</creatorcontrib><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Messerli, Gaëlle</creatorcontrib><creatorcontrib>Hörtensteiner, Stefan</creatorcontrib><creatorcontrib>Zeeman, Samuel C.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stettler, Michaela</au><au>Eicke, Simona</au><au>Mettler, Tabea</au><au>Messerli, Gaëlle</au><au>Hörtensteiner, Stefan</au><au>Zeeman, Samuel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</atitle><jtitle>Molecular plant</jtitle><addtitle>Molecular Plant</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>2</volume><issue>6</issue><spage>1233</spage><epage>1246</epage><pages>1233-1246</pages><issn>1674-2052</issn><eissn>1752-9867</eissn><abstract>In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>19946617</pmid><doi>10.1093/mp/ssp093</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-2052 |
ispartof | Molecular plant, 2009-11, Vol.2 (6), p.1233-1246 |
issn | 1674-2052 1752-9867 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782796 |
source | Elsevier |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism autophagy Carbohydrate metabolism chloroplast biology Chloroplasts - genetics Chloroplasts - metabolism Chloroplasts - ultrastructure Mutation Phenotype photosynthesis Photosynthesis - genetics Plant Leaves - growth & development senescence Starch - antagonists & inhibitors Starch - metabolism 代谢降解 分解产物 叶片叶绿体 拟南芥 淀粉 触发器 阻断 |
title | Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blocking%20the%20Metabolism%20of%20Starch%20Breakdown%20Products%20in%20Arabidopsis%20Leaves%20Triggers%20Chloroplast%20Degradation&rft.jtitle=Molecular%20plant&rft.au=Stettler,%20Michaela&rft.date=2009-11-01&rft.volume=2&rft.issue=6&rft.spage=1233&rft.epage=1246&rft.pages=1233-1246&rft.issn=1674-2052&rft.eissn=1752-9867&rft_id=info:doi/10.1093/mp/ssp093&rft_dat=%3Cproquest_pubme%3E734162450%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734162450&rft_id=info:pmid/19946617&rft_cqvip_id=32431142&rft_oup_id=10.1093/mp/ssp093&rfr_iscdi=true |