Loading…

Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation

In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose i...

Full description

Saved in:
Bibliographic Details
Published in:Molecular plant 2009-11, Vol.2 (6), p.1233-1246
Main Authors: Stettler, Michaela, Eicke, Simona, Mettler, Tabea, Messerli, Gaëlle, Hörtensteiner, Stefan, Zeeman, Samuel C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3
cites cdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3
container_end_page 1246
container_issue 6
container_start_page 1233
container_title Molecular plant
container_volume 2
creator Stettler, Michaela
Eicke, Simona
Mettler, Tabea
Messerli, Gaëlle
Hörtensteiner, Stefan
Zeeman, Samuel C.
description In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.
doi_str_mv 10.1093/mp/ssp093
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>32431142</cqvip_id><oup_id>10.1093/mp/ssp093</oup_id><els_id>S1674205214605013</els_id><sourcerecordid>734162450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</originalsourceid><addsrcrecordid>eNp9kluL1TAUhYMozjDOg39AggjiQ53m0rR5EWaOVzii4Pgc0mS3DadtOkl6xH9vpAcvID7tBfvLyiIrCD0m5UtSSnY1LVcxLlndQ-ekrmghG1Hfz1rUvKBlRc_QZYyuLSkjhIqSP0RnREouBKnP0eFm9Obg5h6nAfBHSLr1o4sT9h3-knQwA74JoA_Wf5vx5-DtalLEbsbXQbfO-iW6iPegjxDxbXB9DyHi3TD64JdRx4RfQx-01cn5-RF60OkxwuVpXqCvb9_c7t4X-0_vPuyu94WpeJkKCsLWlmjNsiDcSKOlpqxiRENjJXTCGmmlKJtOMCNY09TctoZIAFLRzrIL9GrzXdZ2AmtgTkGPaglu0uG78tqpvzezG1Tvj4rWDa2lyAbPTwbB360Qk5pcNDCOega_RlUzTgTlVZnJFxtpgo8xQPfrFlKqn_WoaVFbPZl98mes3-SpjAw82wC_Lv_1YRsG-Q2PDoKKxsFswLoAJinr3T9PPT0lHfzc3-XGVavNoXMjKEZ5_hucsh-Q0bkV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734162450</pqid></control><display><type>article</type><title>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</title><source>Elsevier</source><creator>Stettler, Michaela ; Eicke, Simona ; Mettler, Tabea ; Messerli, Gaëlle ; Hörtensteiner, Stefan ; Zeeman, Samuel C.</creator><creatorcontrib>Stettler, Michaela ; Eicke, Simona ; Mettler, Tabea ; Messerli, Gaëlle ; Hörtensteiner, Stefan ; Zeeman, Samuel C.</creatorcontrib><description>In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.</description><identifier>ISSN: 1674-2052</identifier><identifier>EISSN: 1752-9867</identifier><identifier>DOI: 10.1093/mp/ssp093</identifier><identifier>PMID: 19946617</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; autophagy ; Carbohydrate metabolism ; chloroplast biology ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Chloroplasts - ultrastructure ; Mutation ; Phenotype ; photosynthesis ; Photosynthesis - genetics ; Plant Leaves - growth &amp; development ; senescence ; Starch - antagonists &amp; inhibitors ; Starch - metabolism ; 代谢降解 ; 分解产物 ; 叶片叶绿体 ; 拟南芥 ; 淀粉 ; 触发器 ; 阻断</subject><ispartof>Molecular plant, 2009-11, Vol.2 (6), p.1233-1246</ispartof><rights>2009 The Authors. All rights reserved.</rights><rights>The Author 2009. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPP and IPPE, SIBS, CAS. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</citedby><cites>FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/90143B/90143B.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19946617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stettler, Michaela</creatorcontrib><creatorcontrib>Eicke, Simona</creatorcontrib><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Messerli, Gaëlle</creatorcontrib><creatorcontrib>Hörtensteiner, Stefan</creatorcontrib><creatorcontrib>Zeeman, Samuel C.</creatorcontrib><title>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</title><title>Molecular plant</title><addtitle>Molecular Plant</addtitle><description>In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>autophagy</subject><subject>Carbohydrate metabolism</subject><subject>chloroplast biology</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Chloroplasts - ultrastructure</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Plant Leaves - growth &amp; development</subject><subject>senescence</subject><subject>Starch - antagonists &amp; inhibitors</subject><subject>Starch - metabolism</subject><subject>代谢降解</subject><subject>分解产物</subject><subject>叶片叶绿体</subject><subject>拟南芥</subject><subject>淀粉</subject><subject>触发器</subject><subject>阻断</subject><issn>1674-2052</issn><issn>1752-9867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kluL1TAUhYMozjDOg39AggjiQ53m0rR5EWaOVzii4Pgc0mS3DadtOkl6xH9vpAcvID7tBfvLyiIrCD0m5UtSSnY1LVcxLlndQ-ekrmghG1Hfz1rUvKBlRc_QZYyuLSkjhIqSP0RnREouBKnP0eFm9Obg5h6nAfBHSLr1o4sT9h3-knQwA74JoA_Wf5vx5-DtalLEbsbXQbfO-iW6iPegjxDxbXB9DyHi3TD64JdRx4RfQx-01cn5-RF60OkxwuVpXqCvb9_c7t4X-0_vPuyu94WpeJkKCsLWlmjNsiDcSKOlpqxiRENjJXTCGmmlKJtOMCNY09TctoZIAFLRzrIL9GrzXdZ2AmtgTkGPaglu0uG78tqpvzezG1Tvj4rWDa2lyAbPTwbB360Qk5pcNDCOega_RlUzTgTlVZnJFxtpgo8xQPfrFlKqn_WoaVFbPZl98mes3-SpjAw82wC_Lv_1YRsG-Q2PDoKKxsFswLoAJinr3T9PPT0lHfzc3-XGVavNoXMjKEZ5_hucsh-Q0bkV</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Stettler, Michaela</creator><creator>Eicke, Simona</creator><creator>Mettler, Tabea</creator><creator>Messerli, Gaëlle</creator><creator>Hörtensteiner, Stefan</creator><creator>Zeeman, Samuel C.</creator><general>Elsevier Inc</general><general>Oxford University Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</title><author>Stettler, Michaela ; Eicke, Simona ; Mettler, Tabea ; Messerli, Gaëlle ; Hörtensteiner, Stefan ; Zeeman, Samuel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>autophagy</topic><topic>Carbohydrate metabolism</topic><topic>chloroplast biology</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Chloroplasts - ultrastructure</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Plant Leaves - growth &amp; development</topic><topic>senescence</topic><topic>Starch - antagonists &amp; inhibitors</topic><topic>Starch - metabolism</topic><topic>代谢降解</topic><topic>分解产物</topic><topic>叶片叶绿体</topic><topic>拟南芥</topic><topic>淀粉</topic><topic>触发器</topic><topic>阻断</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stettler, Michaela</creatorcontrib><creatorcontrib>Eicke, Simona</creatorcontrib><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Messerli, Gaëlle</creatorcontrib><creatorcontrib>Hörtensteiner, Stefan</creatorcontrib><creatorcontrib>Zeeman, Samuel C.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular plant</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stettler, Michaela</au><au>Eicke, Simona</au><au>Mettler, Tabea</au><au>Messerli, Gaëlle</au><au>Hörtensteiner, Stefan</au><au>Zeeman, Samuel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation</atitle><jtitle>Molecular plant</jtitle><addtitle>Molecular Plant</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>2</volume><issue>6</issue><spage>1233</spage><epage>1246</epage><pages>1233-1246</pages><issn>1674-2052</issn><eissn>1752-9867</eissn><abstract>In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>19946617</pmid><doi>10.1093/mp/ssp093</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-2052
ispartof Molecular plant, 2009-11, Vol.2 (6), p.1233-1246
issn 1674-2052
1752-9867
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782796
source Elsevier
subjects Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
autophagy
Carbohydrate metabolism
chloroplast biology
Chloroplasts - genetics
Chloroplasts - metabolism
Chloroplasts - ultrastructure
Mutation
Phenotype
photosynthesis
Photosynthesis - genetics
Plant Leaves - growth & development
senescence
Starch - antagonists & inhibitors
Starch - metabolism
代谢降解
分解产物
叶片叶绿体
拟南芥
淀粉
触发器
阻断
title Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blocking%20the%20Metabolism%20of%20Starch%20Breakdown%20Products%20in%20Arabidopsis%20Leaves%20Triggers%20Chloroplast%20Degradation&rft.jtitle=Molecular%20plant&rft.au=Stettler,%20Michaela&rft.date=2009-11-01&rft.volume=2&rft.issue=6&rft.spage=1233&rft.epage=1246&rft.pages=1233-1246&rft.issn=1674-2052&rft.eissn=1752-9867&rft_id=info:doi/10.1093/mp/ssp093&rft_dat=%3Cproquest_pubme%3E734162450%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-2e6d7d1aa3e6d14c9ca9a23531ae8d9ef6dc9d9608f63c638874dbc19ee152fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734162450&rft_id=info:pmid/19946617&rft_cqvip_id=32431142&rft_oup_id=10.1093/mp/ssp093&rfr_iscdi=true