Loading…
N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo
The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and...
Saved in:
Published in: | The Journal of biological chemistry 2009-11, Vol.284 (48), p.33030-33039 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and craniosynostosis syndromes, and biophysical studies in vitro suggest that N-glycosylation of FGFR alters ligand and heparan sulfate binding properties. The evolutionarily conserved FGFR signaling system of Caenorhabditis elegans has been used to assess the role of N-glycosylation in the regulation of FGFR signaling in vivo. The C. elegans FGF receptor, EGL-15, is N-glycosylated in vivo, and genetic substitution of specific consensus N-glycosylation sites leads to defects in the maintenance of fluid homeostasis and differentiation of sex muscles, both of which are phenotypes previously associated with hyperactive EGL-15 signaling. These phenotypes are suppressed by hypoactive mutations in EGL-15 downstream signaling components or activating mutations in the phosphatidylinositol 3-kinase pathway, respectively. The results show that N-glycans negatively regulate FGFR activity in vivo supporting the notion that mutation of N-glycosylation sites in human FGFR may lead to inappropriate activation of the receptor. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M109.058925 |