Loading…

Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction

LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2009-12, Vol.284 (51), p.35839-35849
Main Authors: Ikeda, Yasumasa, Sato, Kaori, Pimentel, David R., Sam, Flora, Shaw, Reuben J., Dyck, Jason R.B., Walsh, Kenneth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903
cites cdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903
container_end_page 35849
container_issue 51
container_start_page 35839
container_title The Journal of biological chemistry
container_volume 284
creator Ikeda, Yasumasa
Sato, Kaori
Pimentel, David R.
Sam, Flora
Shaw, Reuben J.
Dyck, Jason R.B.
Walsh, Kenneth
description LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.
doi_str_mv 10.1074/jbc.M109.057273
format article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820375487</els_id><sourcerecordid>S0021925820375487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0EokvhzA1y4JrtjB3H8QUJtpSiLuIAlbhZXmeycbUbR3baav99vUrFx6FzmcM8887oYewtwhJBVWc3G7f8jqCXIBVX4hlbIDSiFBJ_P2cLAI6l5rI5Ya9SuoFclcaX7AR1w5uqqhfsYmVj660r00jOd94V57SjyYehCF2xvvqMxZpsm4opFJeHkeIUw9gfCju0xfkhdbeDO8Kv2YvO7hK9eeyn7Priy6_VZbn-8fXb6tO6dJLrqUTbUNtotbGVqC3oWldacolKaxItClcJBZmUVBO0JKzWHSjeAaKraw3ilH2cc8fbzZ5aR8MU7c6M0e9tPJhgvfl_MvjebMOd4UojoMgBZ3OAiyGlSN2fXQRzVGqyUnNUamaleePdvyf_8o8OM_BhBnq_7e99JLPxwfW0N3luJBohG6Ez9n7GOhuM3UafzPVPnn8CVCgkVJnQM0HZ4J2naJLzNDhqc6ibTBv8k18-ACAhmdY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Ikeda, Yasumasa ; Sato, Kaori ; Pimentel, David R. ; Sam, Flora ; Shaw, Reuben J. ; Dyck, Jason R.B. ; Walsh, Kenneth</creator><creatorcontrib>Ikeda, Yasumasa ; Sato, Kaori ; Pimentel, David R. ; Sam, Flora ; Shaw, Reuben J. ; Dyck, Jason R.B. ; Walsh, Kenneth</creatorcontrib><description>LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.057273</identifier><identifier>PMID: 19828446</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antibiotics, Antineoplastic - pharmacology ; Atrial Fibrillation - enzymology ; Atrial Fibrillation - genetics ; Atrial Fibrillation - pathology ; Carrier Proteins - antagonists &amp; inhibitors ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Collagen Type I - biosynthesis ; Collagen Type I - genetics ; Collagen Type II - biosynthesis ; Collagen Type II - genetics ; Fibrosis ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Heart Atria - enzymology ; Heart Atria - pathology ; Hypertrophy, Left Ventricular - enzymology ; Hypertrophy, Left Ventricular - genetics ; Hypertrophy, Left Ventricular - pathology ; Mechanisms of Signal Transduction ; Mice ; Mice, Knockout ; Myocardium - enzymology ; Myocardium - pathology ; Organ Specificity - genetics ; Peptide Elongation Factor 2 - genetics ; Peptide Elongation Factor 2 - metabolism ; Phosphorylation - drug effects ; Phosphorylation - genetics ; Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Ribosomal Protein S6 Kinases, 70-kDa - genetics ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Sirolimus - pharmacology ; TOR Serine-Threonine Kinases</subject><ispartof>The Journal of biological chemistry, 2009-12, Vol.284 (51), p.35839-35849</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</citedby><cites>FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791013/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820375487$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19828446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikeda, Yasumasa</creatorcontrib><creatorcontrib>Sato, Kaori</creatorcontrib><creatorcontrib>Pimentel, David R.</creatorcontrib><creatorcontrib>Sam, Flora</creatorcontrib><creatorcontrib>Shaw, Reuben J.</creatorcontrib><creatorcontrib>Dyck, Jason R.B.</creatorcontrib><creatorcontrib>Walsh, Kenneth</creatorcontrib><title>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.</description><subject>Animals</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Atrial Fibrillation - enzymology</subject><subject>Atrial Fibrillation - genetics</subject><subject>Atrial Fibrillation - pathology</subject><subject>Carrier Proteins - antagonists &amp; inhibitors</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Collagen Type I - biosynthesis</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type II - biosynthesis</subject><subject>Collagen Type II - genetics</subject><subject>Fibrosis</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Heart Atria - enzymology</subject><subject>Heart Atria - pathology</subject><subject>Hypertrophy, Left Ventricular - enzymology</subject><subject>Hypertrophy, Left Ventricular - genetics</subject><subject>Hypertrophy, Left Ventricular - pathology</subject><subject>Mechanisms of Signal Transduction</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myocardium - enzymology</subject><subject>Myocardium - pathology</subject><subject>Organ Specificity - genetics</subject><subject>Peptide Elongation Factor 2 - genetics</subject><subject>Peptide Elongation Factor 2 - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Phosphorylation - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Sirolimus - pharmacology</subject><subject>TOR Serine-Threonine Kinases</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1v1DAQhi0EokvhzA1y4JrtjB3H8QUJtpSiLuIAlbhZXmeycbUbR3baav99vUrFx6FzmcM8887oYewtwhJBVWc3G7f8jqCXIBVX4hlbIDSiFBJ_P2cLAI6l5rI5Ya9SuoFclcaX7AR1w5uqqhfsYmVj660r00jOd94V57SjyYehCF2xvvqMxZpsm4opFJeHkeIUw9gfCju0xfkhdbeDO8Kv2YvO7hK9eeyn7Priy6_VZbn-8fXb6tO6dJLrqUTbUNtotbGVqC3oWldacolKaxItClcJBZmUVBO0JKzWHSjeAaKraw3ilH2cc8fbzZ5aR8MU7c6M0e9tPJhgvfl_MvjebMOd4UojoMgBZ3OAiyGlSN2fXQRzVGqyUnNUamaleePdvyf_8o8OM_BhBnq_7e99JLPxwfW0N3luJBohG6Ez9n7GOhuM3UafzPVPnn8CVCgkVJnQM0HZ4J2naJLzNDhqc6ibTBv8k18-ACAhmdY</recordid><startdate>20091218</startdate><enddate>20091218</enddate><creator>Ikeda, Yasumasa</creator><creator>Sato, Kaori</creator><creator>Pimentel, David R.</creator><creator>Sam, Flora</creator><creator>Shaw, Reuben J.</creator><creator>Dyck, Jason R.B.</creator><creator>Walsh, Kenneth</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091218</creationdate><title>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</title><author>Ikeda, Yasumasa ; Sato, Kaori ; Pimentel, David R. ; Sam, Flora ; Shaw, Reuben J. ; Dyck, Jason R.B. ; Walsh, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Atrial Fibrillation - enzymology</topic><topic>Atrial Fibrillation - genetics</topic><topic>Atrial Fibrillation - pathology</topic><topic>Carrier Proteins - antagonists &amp; inhibitors</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Collagen Type I - biosynthesis</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type II - biosynthesis</topic><topic>Collagen Type II - genetics</topic><topic>Fibrosis</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Heart Atria - enzymology</topic><topic>Heart Atria - pathology</topic><topic>Hypertrophy, Left Ventricular - enzymology</topic><topic>Hypertrophy, Left Ventricular - genetics</topic><topic>Hypertrophy, Left Ventricular - pathology</topic><topic>Mechanisms of Signal Transduction</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myocardium - enzymology</topic><topic>Myocardium - pathology</topic><topic>Organ Specificity - genetics</topic><topic>Peptide Elongation Factor 2 - genetics</topic><topic>Peptide Elongation Factor 2 - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Phosphorylation - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists &amp; inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Sirolimus - pharmacology</topic><topic>TOR Serine-Threonine Kinases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Yasumasa</creatorcontrib><creatorcontrib>Sato, Kaori</creatorcontrib><creatorcontrib>Pimentel, David R.</creatorcontrib><creatorcontrib>Sam, Flora</creatorcontrib><creatorcontrib>Shaw, Reuben J.</creatorcontrib><creatorcontrib>Dyck, Jason R.B.</creatorcontrib><creatorcontrib>Walsh, Kenneth</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Yasumasa</au><au>Sato, Kaori</au><au>Pimentel, David R.</au><au>Sam, Flora</au><au>Shaw, Reuben J.</au><au>Dyck, Jason R.B.</au><au>Walsh, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-12-18</date><risdate>2009</risdate><volume>284</volume><issue>51</issue><spage>35839</spage><epage>35849</epage><pages>35839-35849</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19828446</pmid><doi>10.1074/jbc.M109.057273</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-12, Vol.284 (51), p.35839-35849
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791013
source Elsevier ScienceDirect Journals; PubMed Central
subjects Animals
Antibiotics, Antineoplastic - pharmacology
Atrial Fibrillation - enzymology
Atrial Fibrillation - genetics
Atrial Fibrillation - pathology
Carrier Proteins - antagonists & inhibitors
Carrier Proteins - genetics
Carrier Proteins - metabolism
Collagen Type I - biosynthesis
Collagen Type I - genetics
Collagen Type II - biosynthesis
Collagen Type II - genetics
Fibrosis
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Heart Atria - enzymology
Heart Atria - pathology
Hypertrophy, Left Ventricular - enzymology
Hypertrophy, Left Ventricular - genetics
Hypertrophy, Left Ventricular - pathology
Mechanisms of Signal Transduction
Mice
Mice, Knockout
Myocardium - enzymology
Myocardium - pathology
Organ Specificity - genetics
Peptide Elongation Factor 2 - genetics
Peptide Elongation Factor 2 - metabolism
Phosphorylation - drug effects
Phosphorylation - genetics
Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Protein Kinases - genetics
Protein Kinases - metabolism
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Ribosomal Protein S6 Kinases, 70-kDa - genetics
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
Signal Transduction - drug effects
Signal Transduction - genetics
Sirolimus - pharmacology
TOR Serine-Threonine Kinases
title Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac-specific%20Deletion%20of%20LKB1%20Leads%20to%20Hypertrophy%20and%20Dysfunction&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ikeda,%20Yasumasa&rft.date=2009-12-18&rft.volume=284&rft.issue=51&rft.spage=35839&rft.epage=35849&rft.pages=35839-35849&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.057273&rft_dat=%3Celsevier_pubme%3ES0021925820375487%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19828446&rfr_iscdi=true