Loading…
Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction
LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice...
Saved in:
Published in: | The Journal of biological chemistry 2009-12, Vol.284 (51), p.35839-35849 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903 |
container_end_page | 35849 |
container_issue | 51 |
container_start_page | 35839 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Ikeda, Yasumasa Sato, Kaori Pimentel, David R. Sam, Flora Shaw, Reuben J. Dyck, Jason R.B. Walsh, Kenneth |
description | LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction. |
doi_str_mv | 10.1074/jbc.M109.057273 |
format | article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820375487</els_id><sourcerecordid>S0021925820375487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0EokvhzA1y4JrtjB3H8QUJtpSiLuIAlbhZXmeycbUbR3baav99vUrFx6FzmcM8887oYewtwhJBVWc3G7f8jqCXIBVX4hlbIDSiFBJ_P2cLAI6l5rI5Ya9SuoFclcaX7AR1w5uqqhfsYmVj660r00jOd94V57SjyYehCF2xvvqMxZpsm4opFJeHkeIUw9gfCju0xfkhdbeDO8Kv2YvO7hK9eeyn7Priy6_VZbn-8fXb6tO6dJLrqUTbUNtotbGVqC3oWldacolKaxItClcJBZmUVBO0JKzWHSjeAaKraw3ilH2cc8fbzZ5aR8MU7c6M0e9tPJhgvfl_MvjebMOd4UojoMgBZ3OAiyGlSN2fXQRzVGqyUnNUamaleePdvyf_8o8OM_BhBnq_7e99JLPxwfW0N3luJBohG6Ez9n7GOhuM3UafzPVPnn8CVCgkVJnQM0HZ4J2naJLzNDhqc6ibTBv8k18-ACAhmdY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Ikeda, Yasumasa ; Sato, Kaori ; Pimentel, David R. ; Sam, Flora ; Shaw, Reuben J. ; Dyck, Jason R.B. ; Walsh, Kenneth</creator><creatorcontrib>Ikeda, Yasumasa ; Sato, Kaori ; Pimentel, David R. ; Sam, Flora ; Shaw, Reuben J. ; Dyck, Jason R.B. ; Walsh, Kenneth</creatorcontrib><description>LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.057273</identifier><identifier>PMID: 19828446</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antibiotics, Antineoplastic - pharmacology ; Atrial Fibrillation - enzymology ; Atrial Fibrillation - genetics ; Atrial Fibrillation - pathology ; Carrier Proteins - antagonists & inhibitors ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Collagen Type I - biosynthesis ; Collagen Type I - genetics ; Collagen Type II - biosynthesis ; Collagen Type II - genetics ; Fibrosis ; Gene Expression Regulation - drug effects ; Gene Expression Regulation - genetics ; Heart Atria - enzymology ; Heart Atria - pathology ; Hypertrophy, Left Ventricular - enzymology ; Hypertrophy, Left Ventricular - genetics ; Hypertrophy, Left Ventricular - pathology ; Mechanisms of Signal Transduction ; Mice ; Mice, Knockout ; Myocardium - enzymology ; Myocardium - pathology ; Organ Specificity - genetics ; Peptide Elongation Factor 2 - genetics ; Peptide Elongation Factor 2 - metabolism ; Phosphorylation - drug effects ; Phosphorylation - genetics ; Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Ribosomal Protein S6 Kinases, 70-kDa - genetics ; Ribosomal Protein S6 Kinases, 70-kDa - metabolism ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Sirolimus - pharmacology ; TOR Serine-Threonine Kinases</subject><ispartof>The Journal of biological chemistry, 2009-12, Vol.284 (51), p.35839-35849</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</citedby><cites>FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791013/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820375487$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19828446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikeda, Yasumasa</creatorcontrib><creatorcontrib>Sato, Kaori</creatorcontrib><creatorcontrib>Pimentel, David R.</creatorcontrib><creatorcontrib>Sam, Flora</creatorcontrib><creatorcontrib>Shaw, Reuben J.</creatorcontrib><creatorcontrib>Dyck, Jason R.B.</creatorcontrib><creatorcontrib>Walsh, Kenneth</creatorcontrib><title>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.</description><subject>Animals</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Atrial Fibrillation - enzymology</subject><subject>Atrial Fibrillation - genetics</subject><subject>Atrial Fibrillation - pathology</subject><subject>Carrier Proteins - antagonists & inhibitors</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Collagen Type I - biosynthesis</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type II - biosynthesis</subject><subject>Collagen Type II - genetics</subject><subject>Fibrosis</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Expression Regulation - genetics</subject><subject>Heart Atria - enzymology</subject><subject>Heart Atria - pathology</subject><subject>Hypertrophy, Left Ventricular - enzymology</subject><subject>Hypertrophy, Left Ventricular - genetics</subject><subject>Hypertrophy, Left Ventricular - pathology</subject><subject>Mechanisms of Signal Transduction</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Myocardium - enzymology</subject><subject>Myocardium - pathology</subject><subject>Organ Specificity - genetics</subject><subject>Peptide Elongation Factor 2 - genetics</subject><subject>Peptide Elongation Factor 2 - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Phosphorylation - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - genetics</subject><subject>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Sirolimus - pharmacology</subject><subject>TOR Serine-Threonine Kinases</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1v1DAQhi0EokvhzA1y4JrtjB3H8QUJtpSiLuIAlbhZXmeycbUbR3baav99vUrFx6FzmcM8887oYewtwhJBVWc3G7f8jqCXIBVX4hlbIDSiFBJ_P2cLAI6l5rI5Ya9SuoFclcaX7AR1w5uqqhfsYmVj660r00jOd94V57SjyYehCF2xvvqMxZpsm4opFJeHkeIUw9gfCju0xfkhdbeDO8Kv2YvO7hK9eeyn7Priy6_VZbn-8fXb6tO6dJLrqUTbUNtotbGVqC3oWldacolKaxItClcJBZmUVBO0JKzWHSjeAaKraw3ilH2cc8fbzZ5aR8MU7c6M0e9tPJhgvfl_MvjebMOd4UojoMgBZ3OAiyGlSN2fXQRzVGqyUnNUamaleePdvyf_8o8OM_BhBnq_7e99JLPxwfW0N3luJBohG6Ez9n7GOhuM3UafzPVPnn8CVCgkVJnQM0HZ4J2naJLzNDhqc6ibTBv8k18-ACAhmdY</recordid><startdate>20091218</startdate><enddate>20091218</enddate><creator>Ikeda, Yasumasa</creator><creator>Sato, Kaori</creator><creator>Pimentel, David R.</creator><creator>Sam, Flora</creator><creator>Shaw, Reuben J.</creator><creator>Dyck, Jason R.B.</creator><creator>Walsh, Kenneth</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091218</creationdate><title>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</title><author>Ikeda, Yasumasa ; Sato, Kaori ; Pimentel, David R. ; Sam, Flora ; Shaw, Reuben J. ; Dyck, Jason R.B. ; Walsh, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Atrial Fibrillation - enzymology</topic><topic>Atrial Fibrillation - genetics</topic><topic>Atrial Fibrillation - pathology</topic><topic>Carrier Proteins - antagonists & inhibitors</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Collagen Type I - biosynthesis</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type II - biosynthesis</topic><topic>Collagen Type II - genetics</topic><topic>Fibrosis</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Expression Regulation - genetics</topic><topic>Heart Atria - enzymology</topic><topic>Heart Atria - pathology</topic><topic>Hypertrophy, Left Ventricular - enzymology</topic><topic>Hypertrophy, Left Ventricular - genetics</topic><topic>Hypertrophy, Left Ventricular - pathology</topic><topic>Mechanisms of Signal Transduction</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Myocardium - enzymology</topic><topic>Myocardium - pathology</topic><topic>Organ Specificity - genetics</topic><topic>Peptide Elongation Factor 2 - genetics</topic><topic>Peptide Elongation Factor 2 - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Phosphorylation - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - genetics</topic><topic>Ribosomal Protein S6 Kinases, 70-kDa - metabolism</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Sirolimus - pharmacology</topic><topic>TOR Serine-Threonine Kinases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Yasumasa</creatorcontrib><creatorcontrib>Sato, Kaori</creatorcontrib><creatorcontrib>Pimentel, David R.</creatorcontrib><creatorcontrib>Sam, Flora</creatorcontrib><creatorcontrib>Shaw, Reuben J.</creatorcontrib><creatorcontrib>Dyck, Jason R.B.</creatorcontrib><creatorcontrib>Walsh, Kenneth</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Yasumasa</au><au>Sato, Kaori</au><au>Pimentel, David R.</au><au>Sam, Flora</au><au>Shaw, Reuben J.</au><au>Dyck, Jason R.B.</au><au>Walsh, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-12-18</date><risdate>2009</risdate><volume>284</volume><issue>51</issue><spage>35839</spage><epage>35849</epage><pages>35839-35849</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19828446</pmid><doi>10.1074/jbc.M109.057273</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-12, Vol.284 (51), p.35839-35849 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2791013 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Animals Antibiotics, Antineoplastic - pharmacology Atrial Fibrillation - enzymology Atrial Fibrillation - genetics Atrial Fibrillation - pathology Carrier Proteins - antagonists & inhibitors Carrier Proteins - genetics Carrier Proteins - metabolism Collagen Type I - biosynthesis Collagen Type I - genetics Collagen Type II - biosynthesis Collagen Type II - genetics Fibrosis Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Heart Atria - enzymology Heart Atria - pathology Hypertrophy, Left Ventricular - enzymology Hypertrophy, Left Ventricular - genetics Hypertrophy, Left Ventricular - pathology Mechanisms of Signal Transduction Mice Mice, Knockout Myocardium - enzymology Myocardium - pathology Organ Specificity - genetics Peptide Elongation Factor 2 - genetics Peptide Elongation Factor 2 - metabolism Phosphorylation - drug effects Phosphorylation - genetics Phosphotransferases (Alcohol Group Acceptor) - antagonists & inhibitors Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - metabolism Protein Kinases - genetics Protein Kinases - metabolism Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Ribosomal Protein S6 Kinases, 70-kDa - genetics Ribosomal Protein S6 Kinases, 70-kDa - metabolism RNA, Messenger - biosynthesis RNA, Messenger - genetics Signal Transduction - drug effects Signal Transduction - genetics Sirolimus - pharmacology TOR Serine-Threonine Kinases |
title | Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac-specific%20Deletion%20of%20LKB1%20Leads%20to%20Hypertrophy%20and%20Dysfunction&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ikeda,%20Yasumasa&rft.date=2009-12-18&rft.volume=284&rft.issue=51&rft.spage=35839&rft.epage=35849&rft.pages=35839-35849&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.057273&rft_dat=%3Celsevier_pubme%3ES0021925820375487%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-1a8ed897ba436a0969495251799e3d13c43705295e6e0de3a99f072f011c66903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/19828446&rfr_iscdi=true |