Loading…
Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies
Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in...
Saved in:
Published in: | BMC proceedings 2009-12, Vol.3 Suppl 7 (Suppl 7), p.S24-S24, Article S24 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3 |
container_end_page | S24 |
container_issue | Suppl 7 |
container_start_page | S24 |
container_title | BMC proceedings |
container_volume | 3 Suppl 7 |
creator | Childers, Douglas K Kang, Guolian Liu, Nianjun Gao, Guimin Zhang, Kui |
description | Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation. |
doi_str_mv | 10.1186/1753-6561-3-S7-S24 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2795921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830109801</sourcerecordid><originalsourceid>FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3</originalsourceid><addsrcrecordid>eNqFUstu1TAQtRCIlgs_wAJFYgGbgF9x4g1SVZUWqRKLC2vLsSeNqyRObaeof4-jlKsW8VjZnjlzPOfMIPSa4A-ENOIjqStWikqQkpX7utxT_gQdH4JPH9yP0IsYrzEWuJL0OTqiGJMGE36Mbk7meXBGJ-enwneFG-clba8RUu9tLJIvUg-FnvRwF11cUaGHZdTJO1vokPrgUo5bnXThpuIKJj9C-cPZXBSjN27ji2mxDuJL9KzTQ4RX9-cOff989u30orz8ev7l9OSybFlFedlBZ6ltuW51Y7jEYHVrWltJa0UnrRDCMM1JRUXLaCvAAK65gQ5n0dqAYTv0aeOdl3YEa2BKQQ9qDm7U4U557dTjzOR6deVvFa1ldolkgrONoHX-LwSPM8aParVcrZYrpva1yjPJPO_uGwn-ZoGY1OiigWHQE_glqpoLhpms5f-RjBMpccbv0Pt_InMbDWVNI1YZb3-DXvsl5GFmFKWEVHj7mm4oE3yMAbqDToLVum1_VvbmocWHkl_rxX4CxIDUmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221150979</pqid></control><display><type>article</type><title>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Childers, Douglas K ; Kang, Guolian ; Liu, Nianjun ; Gao, Guimin ; Zhang, Kui</creator><creatorcontrib>Childers, Douglas K ; Kang, Guolian ; Liu, Nianjun ; Gao, Guimin ; Zhang, Kui</creatorcontrib><description>Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.</description><identifier>ISSN: 1753-6561</identifier><identifier>EISSN: 1753-6561</identifier><identifier>DOI: 10.1186/1753-6561-3-S7-S24</identifier><identifier>PMID: 20018014</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Disease ; Genetics ; Genomes ; Genomics ; Genotype & phenotype ; Haplotypes ; Methods ; Pathogenesis ; Proceedings ; Software packages ; Statistical analysis ; Studies ; Thunnus ; Workshops</subject><ispartof>BMC proceedings, 2009-12, Vol.3 Suppl 7 (Suppl 7), p.S24-S24, Article S24</ispartof><rights>2009 Childers et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2009 Childers et al; licensee BioMed Central Ltd. 2009 Childers et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795921/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1221150979?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20018014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Childers, Douglas K</creatorcontrib><creatorcontrib>Kang, Guolian</creatorcontrib><creatorcontrib>Liu, Nianjun</creatorcontrib><creatorcontrib>Gao, Guimin</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><title>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</title><title>BMC proceedings</title><addtitle>BMC Proc</addtitle><description>Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.</description><subject>Disease</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Haplotypes</subject><subject>Methods</subject><subject>Pathogenesis</subject><subject>Proceedings</subject><subject>Software packages</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Thunnus</subject><subject>Workshops</subject><issn>1753-6561</issn><issn>1753-6561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUstu1TAQtRCIlgs_wAJFYgGbgF9x4g1SVZUWqRKLC2vLsSeNqyRObaeof4-jlKsW8VjZnjlzPOfMIPSa4A-ENOIjqStWikqQkpX7utxT_gQdH4JPH9yP0IsYrzEWuJL0OTqiGJMGE36Mbk7meXBGJ-enwneFG-clba8RUu9tLJIvUg-FnvRwF11cUaGHZdTJO1vokPrgUo5bnXThpuIKJj9C-cPZXBSjN27ji2mxDuJL9KzTQ4RX9-cOff989u30orz8ev7l9OSybFlFedlBZ6ltuW51Y7jEYHVrWltJa0UnrRDCMM1JRUXLaCvAAK65gQ5n0dqAYTv0aeOdl3YEa2BKQQ9qDm7U4U557dTjzOR6deVvFa1ldolkgrONoHX-LwSPM8aParVcrZYrpva1yjPJPO_uGwn-ZoGY1OiigWHQE_glqpoLhpms5f-RjBMpccbv0Pt_InMbDWVNI1YZb3-DXvsl5GFmFKWEVHj7mm4oE3yMAbqDToLVum1_VvbmocWHkl_rxX4CxIDUmg</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Childers, Douglas K</creator><creator>Kang, Guolian</creator><creator>Liu, Nianjun</creator><creator>Gao, Guimin</creator><creator>Zhang, Kui</creator><general>BioMed Central</general><general>BioMed Central Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091215</creationdate><title>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</title><author>Childers, Douglas K ; Kang, Guolian ; Liu, Nianjun ; Gao, Guimin ; Zhang, Kui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Disease</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Haplotypes</topic><topic>Methods</topic><topic>Pathogenesis</topic><topic>Proceedings</topic><topic>Software packages</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Thunnus</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childers, Douglas K</creatorcontrib><creatorcontrib>Kang, Guolian</creatorcontrib><creatorcontrib>Liu, Nianjun</creatorcontrib><creatorcontrib>Gao, Guimin</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childers, Douglas K</au><au>Kang, Guolian</au><au>Liu, Nianjun</au><au>Gao, Guimin</au><au>Zhang, Kui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</atitle><jtitle>BMC proceedings</jtitle><addtitle>BMC Proc</addtitle><date>2009-12-15</date><risdate>2009</risdate><volume>3 Suppl 7</volume><issue>Suppl 7</issue><spage>S24</spage><epage>S24</epage><pages>S24-S24</pages><artnum>S24</artnum><issn>1753-6561</issn><eissn>1753-6561</eissn><abstract>Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>20018014</pmid><doi>10.1186/1753-6561-3-S7-S24</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-6561 |
ispartof | BMC proceedings, 2009-12, Vol.3 Suppl 7 (Suppl 7), p.S24-S24, Article S24 |
issn | 1753-6561 1753-6561 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2795921 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Disease Genetics Genomes Genomics Genotype & phenotype Haplotypes Methods Pathogenesis Proceedings Software packages Statistical analysis Studies Thunnus Workshops |
title | Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20imputation%20methods%20to%20the%20analysis%20of%20rheumatoid%20arthritis%20data%20in%20genome-wide%20association%20studies&rft.jtitle=BMC%20proceedings&rft.au=Childers,%20Douglas%20K&rft.date=2009-12-15&rft.volume=3%20Suppl%207&rft.issue=Suppl%207&rft.spage=S24&rft.epage=S24&rft.pages=S24-S24&rft.artnum=S24&rft.issn=1753-6561&rft.eissn=1753-6561&rft_id=info:doi/10.1186/1753-6561-3-S7-S24&rft_dat=%3Cproquest_pubme%3E2830109801%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1221150979&rft_id=info:pmid/20018014&rfr_iscdi=true |