Loading…

Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies

Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in...

Full description

Saved in:
Bibliographic Details
Published in:BMC proceedings 2009-12, Vol.3 Suppl 7 (Suppl 7), p.S24-S24, Article S24
Main Authors: Childers, Douglas K, Kang, Guolian, Liu, Nianjun, Gao, Guimin, Zhang, Kui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3
container_end_page S24
container_issue Suppl 7
container_start_page S24
container_title BMC proceedings
container_volume 3 Suppl 7
creator Childers, Douglas K
Kang, Guolian
Liu, Nianjun
Gao, Guimin
Zhang, Kui
description Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.
doi_str_mv 10.1186/1753-6561-3-S7-S24
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2795921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830109801</sourcerecordid><originalsourceid>FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3</originalsourceid><addsrcrecordid>eNqFUstu1TAQtRCIlgs_wAJFYgGbgF9x4g1SVZUWqRKLC2vLsSeNqyRObaeof4-jlKsW8VjZnjlzPOfMIPSa4A-ENOIjqStWikqQkpX7utxT_gQdH4JPH9yP0IsYrzEWuJL0OTqiGJMGE36Mbk7meXBGJ-enwneFG-clba8RUu9tLJIvUg-FnvRwF11cUaGHZdTJO1vokPrgUo5bnXThpuIKJj9C-cPZXBSjN27ji2mxDuJL9KzTQ4RX9-cOff989u30orz8ev7l9OSybFlFedlBZ6ltuW51Y7jEYHVrWltJa0UnrRDCMM1JRUXLaCvAAK65gQ5n0dqAYTv0aeOdl3YEa2BKQQ9qDm7U4U557dTjzOR6deVvFa1ldolkgrONoHX-LwSPM8aParVcrZYrpva1yjPJPO_uGwn-ZoGY1OiigWHQE_glqpoLhpms5f-RjBMpccbv0Pt_InMbDWVNI1YZb3-DXvsl5GFmFKWEVHj7mm4oE3yMAbqDToLVum1_VvbmocWHkl_rxX4CxIDUmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221150979</pqid></control><display><type>article</type><title>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Childers, Douglas K ; Kang, Guolian ; Liu, Nianjun ; Gao, Guimin ; Zhang, Kui</creator><creatorcontrib>Childers, Douglas K ; Kang, Guolian ; Liu, Nianjun ; Gao, Guimin ; Zhang, Kui</creatorcontrib><description>Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.</description><identifier>ISSN: 1753-6561</identifier><identifier>EISSN: 1753-6561</identifier><identifier>DOI: 10.1186/1753-6561-3-S7-S24</identifier><identifier>PMID: 20018014</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Disease ; Genetics ; Genomes ; Genomics ; Genotype &amp; phenotype ; Haplotypes ; Methods ; Pathogenesis ; Proceedings ; Software packages ; Statistical analysis ; Studies ; Thunnus ; Workshops</subject><ispartof>BMC proceedings, 2009-12, Vol.3 Suppl 7 (Suppl 7), p.S24-S24, Article S24</ispartof><rights>2009 Childers et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2009 Childers et al; licensee BioMed Central Ltd. 2009 Childers et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795921/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1221150979?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20018014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Childers, Douglas K</creatorcontrib><creatorcontrib>Kang, Guolian</creatorcontrib><creatorcontrib>Liu, Nianjun</creatorcontrib><creatorcontrib>Gao, Guimin</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><title>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</title><title>BMC proceedings</title><addtitle>BMC Proc</addtitle><description>Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.</description><subject>Disease</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Haplotypes</subject><subject>Methods</subject><subject>Pathogenesis</subject><subject>Proceedings</subject><subject>Software packages</subject><subject>Statistical analysis</subject><subject>Studies</subject><subject>Thunnus</subject><subject>Workshops</subject><issn>1753-6561</issn><issn>1753-6561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUstu1TAQtRCIlgs_wAJFYgGbgF9x4g1SVZUWqRKLC2vLsSeNqyRObaeof4-jlKsW8VjZnjlzPOfMIPSa4A-ENOIjqStWikqQkpX7utxT_gQdH4JPH9yP0IsYrzEWuJL0OTqiGJMGE36Mbk7meXBGJ-enwneFG-clba8RUu9tLJIvUg-FnvRwF11cUaGHZdTJO1vokPrgUo5bnXThpuIKJj9C-cPZXBSjN27ji2mxDuJL9KzTQ4RX9-cOff989u30orz8ev7l9OSybFlFedlBZ6ltuW51Y7jEYHVrWltJa0UnrRDCMM1JRUXLaCvAAK65gQ5n0dqAYTv0aeOdl3YEa2BKQQ9qDm7U4U557dTjzOR6deVvFa1ldolkgrONoHX-LwSPM8aParVcrZYrpva1yjPJPO_uGwn-ZoGY1OiigWHQE_glqpoLhpms5f-RjBMpccbv0Pt_InMbDWVNI1YZb3-DXvsl5GFmFKWEVHj7mm4oE3yMAbqDToLVum1_VvbmocWHkl_rxX4CxIDUmg</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Childers, Douglas K</creator><creator>Kang, Guolian</creator><creator>Liu, Nianjun</creator><creator>Gao, Guimin</creator><creator>Zhang, Kui</creator><general>BioMed Central</general><general>BioMed Central Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091215</creationdate><title>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</title><author>Childers, Douglas K ; Kang, Guolian ; Liu, Nianjun ; Gao, Guimin ; Zhang, Kui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Disease</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Haplotypes</topic><topic>Methods</topic><topic>Pathogenesis</topic><topic>Proceedings</topic><topic>Software packages</topic><topic>Statistical analysis</topic><topic>Studies</topic><topic>Thunnus</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childers, Douglas K</creatorcontrib><creatorcontrib>Kang, Guolian</creatorcontrib><creatorcontrib>Liu, Nianjun</creatorcontrib><creatorcontrib>Gao, Guimin</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childers, Douglas K</au><au>Kang, Guolian</au><au>Liu, Nianjun</au><au>Gao, Guimin</au><au>Zhang, Kui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies</atitle><jtitle>BMC proceedings</jtitle><addtitle>BMC Proc</addtitle><date>2009-12-15</date><risdate>2009</risdate><volume>3 Suppl 7</volume><issue>Suppl 7</issue><spage>S24</spage><epage>S24</epage><pages>S24-S24</pages><artnum>S24</artnum><issn>1753-6561</issn><eissn>1753-6561</eissn><abstract>Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association studies. Several imputation methods and corresponding software packages have been developed for this purpose. The objective of our study is to apply three widely used imputation methods and corresponding software packages to a data from a genome-wide association study of rheumatoid arthritis from the North American Rheumatoid Arthritis Consortium in Genetic Analysis Workshop 16, to compare the performances of the three methods, to evaluate their strengths and weaknesses, and to identify additional susceptibility loci underlying rheumatoid arthritis. The software packages used in this paper included a program for Bayesian imputation-based association mapping (BIMBAM), a program for imputing unobserved genotypes in case-control association studies (IMPUTE), and a program for testing untyped alleles (TUNA). We found some untyped SNP that showed significant association with rheumatoid arthritis. Among them, a few of these were not located near any typed SNP that was found to be significant and thus may be worth further investigation.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>20018014</pmid><doi>10.1186/1753-6561-3-S7-S24</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-6561
ispartof BMC proceedings, 2009-12, Vol.3 Suppl 7 (Suppl 7), p.S24-S24, Article S24
issn 1753-6561
1753-6561
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2795921
source Publicly Available Content (ProQuest); PubMed Central
subjects Disease
Genetics
Genomes
Genomics
Genotype & phenotype
Haplotypes
Methods
Pathogenesis
Proceedings
Software packages
Statistical analysis
Studies
Thunnus
Workshops
title Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20imputation%20methods%20to%20the%20analysis%20of%20rheumatoid%20arthritis%20data%20in%20genome-wide%20association%20studies&rft.jtitle=BMC%20proceedings&rft.au=Childers,%20Douglas%20K&rft.date=2009-12-15&rft.volume=3%20Suppl%207&rft.issue=Suppl%207&rft.spage=S24&rft.epage=S24&rft.pages=S24-S24&rft.artnum=S24&rft.issn=1753-6561&rft.eissn=1753-6561&rft_id=info:doi/10.1186/1753-6561-3-S7-S24&rft_dat=%3Cproquest_pubme%3E2830109801%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b3524-fefd2db4aba8c490edabcbd59dd6f9d666c3a41526b32b6ece074cef0175acec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1221150979&rft_id=info:pmid/20018014&rfr_iscdi=true