Loading…

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is eviden...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2010-01, Vol.26 (1), p.139-140
Main Authors: Robinson, Mark D., McCarthy, Davis J., Smyth, Gordon K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3
cites cdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3
container_end_page 140
container_issue 1
container_start_page 139
container_title Bioinformatics
container_volume 26
creator Robinson, Mark D.
McCarthy, Davis J.
Smyth, Gordon K.
description It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au
doi_str_mv 10.1093/bioinformatics/btp616
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2796818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btp616</oup_id><sourcerecordid>734205464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEog_4CaBsgFWoX_GDRSU6ghZpBBICgdhYN44dTDNxsJOq_fd4yGhoNxUrW7rfOffYpyieYfQaI0VPGh_84ELcwORNOmmmkWP-oDjEjKOKoFo9zHfKRcUkogfFUUq_EKoxY-xxcYCVwogieVg0tu3s5zcllGc-mDC0s5lCLEcwl9DZMi8oW--cjXaYPPSlvR6jTcmHoYQB-pvkUxlcZjo_5XFnB3ubaWGCJ8UjB32yT3fncfH1_bsvq4tq_en8w-rtujJSsKlSSpBaMmy54hRqiZu2zTlroqTjogHOjMSONDk6wwg3GKGWUAOCWm6VbOlxcbr4jnOzsa3JiSP0eox-A_FGB_D67mTwP3UXrjQRiksss8GrnUEMv2ebJr3xydi-h8GGOWlBWf5YxlkmX95LUk4l5n8t7wcJJjXncutYL6CJIaVo3T43RnpbuL5buF4Kz7rntx_9T7VrOAMvdgAkA72LMBif9hwhjGJRbzm0cGEe_3t3tUh8muz1XgTxUnNBRa0vvv_QK3bOP66_UX1G_wDeE9sb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21256684</pqid></control><display><type>article</type><title>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</title><source>PubMed Central(OpenAccess)</source><source>Open Access: Oxford University Press Open Journals</source><creator>Robinson, Mark D. ; McCarthy, Davis J. ; Smyth, Gordon K.</creator><creatorcontrib>Robinson, Mark D. ; McCarthy, Davis J. ; Smyth, Gordon K.</creatorcontrib><description>It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btp616</identifier><identifier>PMID: 19910308</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Applications Note ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Oligonucleotide Array Sequence Analysis - methods ; Programming Languages ; Signal Processing, Computer-Assisted ; Software</subject><ispartof>Bioinformatics, 2010-01, Vol.26 (1), p.139-140</ispartof><rights>The Author(s) 2009. Published by Oxford University Press. 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</citedby><cites>FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22431758$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19910308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Mark D.</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Smyth, Gordon K.</creatorcontrib><title>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au</description><subject>Algorithms</subject><subject>Applications Note</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Programming Languages</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUtv1DAUhSMEog_4CaBsgFWoX_GDRSU6ghZpBBICgdhYN44dTDNxsJOq_fd4yGhoNxUrW7rfOffYpyieYfQaI0VPGh_84ELcwORNOmmmkWP-oDjEjKOKoFo9zHfKRcUkogfFUUq_EKoxY-xxcYCVwogieVg0tu3s5zcllGc-mDC0s5lCLEcwl9DZMi8oW--cjXaYPPSlvR6jTcmHoYQB-pvkUxlcZjo_5XFnB3ubaWGCJ8UjB32yT3fncfH1_bsvq4tq_en8w-rtujJSsKlSSpBaMmy54hRqiZu2zTlroqTjogHOjMSONDk6wwg3GKGWUAOCWm6VbOlxcbr4jnOzsa3JiSP0eox-A_FGB_D67mTwP3UXrjQRiksss8GrnUEMv2ebJr3xydi-h8GGOWlBWf5YxlkmX95LUk4l5n8t7wcJJjXncutYL6CJIaVo3T43RnpbuL5buF4Kz7rntx_9T7VrOAMvdgAkA72LMBif9hwhjGJRbzm0cGEe_3t3tUh8muz1XgTxUnNBRa0vvv_QK3bOP66_UX1G_wDeE9sb</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Robinson, Mark D.</creator><creator>McCarthy, Davis J.</creator><creator>Smyth, Gordon K.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>TOX</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</title><author>Robinson, Mark D. ; McCarthy, Davis J. ; Smyth, Gordon K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applications Note</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Programming Languages</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Mark D.</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Smyth, Gordon K.</creatorcontrib><collection>Istex</collection><collection>Open Access: Oxford University Press Open Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Mark D.</au><au>McCarthy, Davis J.</au><au>Smyth, Gordon K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>26</volume><issue>1</issue><spage>139</spage><epage>140</epage><pages>139-140</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19910308</pmid><doi>10.1093/bioinformatics/btp616</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2010-01, Vol.26 (1), p.139-140
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2796818
source PubMed Central(OpenAccess); Open Access: Oxford University Press Open Journals
subjects Algorithms
Applications Note
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Oligonucleotide Array Sequence Analysis - methods
Programming Languages
Signal Processing, Computer-Assisted
Software
title edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=edgeR:%20a%20Bioconductor%20package%20for%20differential%20expression%20analysis%20of%20digital%20gene%20expression%20data&rft.jtitle=Bioinformatics&rft.au=Robinson,%20Mark%20D.&rft.date=2010-01-01&rft.volume=26&rft.issue=1&rft.spage=139&rft.epage=140&rft.pages=139-140&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btp616&rft_dat=%3Cproquest_pubme%3E734205464%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21256684&rft_id=info:pmid/19910308&rft_oup_id=10.1093/bioinformatics/btp616&rfr_iscdi=true