Loading…
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is eviden...
Saved in:
Published in: | Bioinformatics 2010-01, Vol.26 (1), p.139-140 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3 |
container_end_page | 140 |
container_issue | 1 |
container_start_page | 139 |
container_title | Bioinformatics |
container_volume | 26 |
creator | Robinson, Mark D. McCarthy, Davis J. Smyth, Gordon K. |
description | It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au |
doi_str_mv | 10.1093/bioinformatics/btp616 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2796818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btp616</oup_id><sourcerecordid>734205464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEog_4CaBsgFWoX_GDRSU6ghZpBBICgdhYN44dTDNxsJOq_fd4yGhoNxUrW7rfOffYpyieYfQaI0VPGh_84ELcwORNOmmmkWP-oDjEjKOKoFo9zHfKRcUkogfFUUq_EKoxY-xxcYCVwogieVg0tu3s5zcllGc-mDC0s5lCLEcwl9DZMi8oW--cjXaYPPSlvR6jTcmHoYQB-pvkUxlcZjo_5XFnB3ubaWGCJ8UjB32yT3fncfH1_bsvq4tq_en8w-rtujJSsKlSSpBaMmy54hRqiZu2zTlroqTjogHOjMSONDk6wwg3GKGWUAOCWm6VbOlxcbr4jnOzsa3JiSP0eox-A_FGB_D67mTwP3UXrjQRiksss8GrnUEMv2ebJr3xydi-h8GGOWlBWf5YxlkmX95LUk4l5n8t7wcJJjXncutYL6CJIaVo3T43RnpbuL5buF4Kz7rntx_9T7VrOAMvdgAkA72LMBif9hwhjGJRbzm0cGEe_3t3tUh8muz1XgTxUnNBRa0vvv_QK3bOP66_UX1G_wDeE9sb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21256684</pqid></control><display><type>article</type><title>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</title><source>PubMed Central(OpenAccess)</source><source>Open Access: Oxford University Press Open Journals</source><creator>Robinson, Mark D. ; McCarthy, Davis J. ; Smyth, Gordon K.</creator><creatorcontrib>Robinson, Mark D. ; McCarthy, Davis J. ; Smyth, Gordon K.</creatorcontrib><description>It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btp616</identifier><identifier>PMID: 19910308</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Applications Note ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Oligonucleotide Array Sequence Analysis - methods ; Programming Languages ; Signal Processing, Computer-Assisted ; Software</subject><ispartof>Bioinformatics, 2010-01, Vol.26 (1), p.139-140</ispartof><rights>The Author(s) 2009. Published by Oxford University Press. 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</citedby><cites>FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796818/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22431758$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19910308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Mark D.</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Smyth, Gordon K.</creatorcontrib><title>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au</description><subject>Algorithms</subject><subject>Applications Note</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Programming Languages</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkUtv1DAUhSMEog_4CaBsgFWoX_GDRSU6ghZpBBICgdhYN44dTDNxsJOq_fd4yGhoNxUrW7rfOffYpyieYfQaI0VPGh_84ELcwORNOmmmkWP-oDjEjKOKoFo9zHfKRcUkogfFUUq_EKoxY-xxcYCVwogieVg0tu3s5zcllGc-mDC0s5lCLEcwl9DZMi8oW--cjXaYPPSlvR6jTcmHoYQB-pvkUxlcZjo_5XFnB3ubaWGCJ8UjB32yT3fncfH1_bsvq4tq_en8w-rtujJSsKlSSpBaMmy54hRqiZu2zTlroqTjogHOjMSONDk6wwg3GKGWUAOCWm6VbOlxcbr4jnOzsa3JiSP0eox-A_FGB_D67mTwP3UXrjQRiksss8GrnUEMv2ebJr3xydi-h8GGOWlBWf5YxlkmX95LUk4l5n8t7wcJJjXncutYL6CJIaVo3T43RnpbuL5buF4Kz7rntx_9T7VrOAMvdgAkA72LMBif9hwhjGJRbzm0cGEe_3t3tUh8muz1XgTxUnNBRa0vvv_QK3bOP66_UX1G_wDeE9sb</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Robinson, Mark D.</creator><creator>McCarthy, Davis J.</creator><creator>Smyth, Gordon K.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>TOX</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</title><author>Robinson, Mark D. ; McCarthy, Davis J. ; Smyth, Gordon K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applications Note</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Programming Languages</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Mark D.</creatorcontrib><creatorcontrib>McCarthy, Davis J.</creatorcontrib><creatorcontrib>Smyth, Gordon K.</creatorcontrib><collection>Istex</collection><collection>Open Access: Oxford University Press Open Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Mark D.</au><au>McCarthy, Davis J.</au><au>Smyth, Gordon K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>edgeR: a Bioconductor package for differential expression analysis of digital gene expression data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>26</volume><issue>1</issue><spage>139</spage><epage>140</epage><pages>139-140</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19910308</pmid><doi>10.1093/bioinformatics/btp616</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2010-01, Vol.26 (1), p.139-140 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2796818 |
source | PubMed Central(OpenAccess); Open Access: Oxford University Press Open Journals |
subjects | Algorithms Applications Note Biological and medical sciences Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Oligonucleotide Array Sequence Analysis - methods Programming Languages Signal Processing, Computer-Assisted Software |
title | edgeR: a Bioconductor package for differential expression analysis of digital gene expression data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=edgeR:%20a%20Bioconductor%20package%20for%20differential%20expression%20analysis%20of%20digital%20gene%20expression%20data&rft.jtitle=Bioinformatics&rft.au=Robinson,%20Mark%20D.&rft.date=2010-01-01&rft.volume=26&rft.issue=1&rft.spage=139&rft.epage=140&rft.pages=139-140&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btp616&rft_dat=%3Cproquest_pubme%3E734205464%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c874t-99725841e6963a581bdd1995298f67ba64c81f2b9914101b100d23ca73e6e98d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21256684&rft_id=info:pmid/19910308&rft_oup_id=10.1093/bioinformatics/btp616&rfr_iscdi=true |