Loading…
Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade
The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and...
Saved in:
Published in: | The Journal of clinical investigation 2010-01, Vol.120 (1), p.103-114 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c668t-9817f95f8a117a7b7ff9639bfcf319a408b96414000ba1a0e4d886db39f9e1ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c668t-9817f95f8a117a7b7ff9639bfcf319a408b96414000ba1a0e4d886db39f9e1ca3 |
container_end_page | 114 |
container_issue | 1 |
container_start_page | 103 |
container_title | The Journal of clinical investigation |
container_volume | 120 |
creator | Ma, Jianhui Meng, Yan Kwiatkowski, David J Chen, Xinxin Peng, Haiyong Sun, Qian Zha, Xiaojun Wang, Fang Wang, Ying Jing, Yanling Zhang, Shu Chen, Rongrong Wang, Lianmei Wu, Erxi Cai, Guifang Malinowska-Kolodziej, Izabela Liao, Qi Liu, Yuqin Zhao, Yi Sun, Qiang Xu, Kaifeng Dai, Jianwu Han, Jiahuai Wu, Lizi Zhao, Robert Chunhua Shen, Huangxuan Zhang, Hongbing |
description | The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and human cells, acting through induction of the STAT3/p63/Jagged signaling cascade. Furthermore, in response to differential cues from mTOR, we found that Notch served as a molecular switch to shift the balance between cell proliferation and differentiation. We determined that hyperactive mTOR signaling impaired cell differentiation of murine embryonic fibroblasts via potentiation of Notch signaling. Elevated mTOR signaling strongly correlated with enhanced Notch signaling in poorly differentiated but not in well-differentiated human breast cancers. Both human lung lymphangioleiomyomatosis (LAM) and mouse kidney tumors with hyperactive mTOR due to tumor suppressor TSC1 or TSC2 deficiency exhibited enhanced STAT3/p63/Notch signaling. Furthermore, tumorigenic potential of cells with uncontrolled mTOR signaling was suppressed by Notch inhibition. Our data therefore suggest that perturbation of cell differentiation by augmented Notch signaling might be responsible for the underdifferentiated phenotype displayed by certain tumors with an aberrantly activated RTK/PI3K/AKT/mTOR pathway. Additionally, the STAT3/p63/Notch axis may be a useful target for the treatment of cancers exhibiting hyperactive mTOR signaling. |
doi_str_mv | 10.1172/jci37964 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2798675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A241944874</galeid><sourcerecordid>A241944874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-9817f95f8a117a7b7ff9639bfcf319a408b96414000ba1a0e4d886db39f9e1ca3</originalsourceid><addsrcrecordid>eNqN0l1v0zAUBuAIgVgZSPwCFDGJj4usduzEzg1SVfHRaTCJFW6tE8dOXCVxsR3E_j0uHdOKesGVJfvxax_7JMlzjM4xZvl8Iw1hVUkfJDNcFDzjOeEPkxlCOc4qRvhJ8sT7DUKY0oI-Tk5yhAjnmM6S8BmGAXoDYxrAtSqkVqcOtjDcSDOmTrVTD0H5dJicGVUKY5N20xC5VH2fNkZr5dQYDARjY0bn7NR26fV6sSbzbUnmF9C2qpl_sUF2qQQvoVFPk0caeq-e3Y6nybcP79fLT9nl1cfVcnGZybLkIas4ZroqNIdYJLCaaV2VpKq11ARXQBGvY82YIoRqwIAUbTgvm5pUulJYAjlN3u1zt1M9qEbGezroxdaZAdyNsGDE4cpoOtHanyJnFS9ZEQNe3wY4-2NSPojB-F3hMCo7ecEIwbTkBYry5T9yYyc3xupEfOwC5YzziM72qIVeCTNqG0-Vu0ixyCmuKOWMRpUdUa0aVbyiHZU2cfrAnx_xsHvowcijG94ebIgmqF-hhcl7sbr--v_26vuhfXXPdgr60HnbT7vO8IfwzR5KZ713St99CUZi19DiYrn609CRvrj_hXfwbweT311A7QI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200502788</pqid></control><display><type>article</type><title>Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade</title><source>Open Access: PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Ma, Jianhui ; Meng, Yan ; Kwiatkowski, David J ; Chen, Xinxin ; Peng, Haiyong ; Sun, Qian ; Zha, Xiaojun ; Wang, Fang ; Wang, Ying ; Jing, Yanling ; Zhang, Shu ; Chen, Rongrong ; Wang, Lianmei ; Wu, Erxi ; Cai, Guifang ; Malinowska-Kolodziej, Izabela ; Liao, Qi ; Liu, Yuqin ; Zhao, Yi ; Sun, Qiang ; Xu, Kaifeng ; Dai, Jianwu ; Han, Jiahuai ; Wu, Lizi ; Zhao, Robert Chunhua ; Shen, Huangxuan ; Zhang, Hongbing</creator><creatorcontrib>Ma, Jianhui ; Meng, Yan ; Kwiatkowski, David J ; Chen, Xinxin ; Peng, Haiyong ; Sun, Qian ; Zha, Xiaojun ; Wang, Fang ; Wang, Ying ; Jing, Yanling ; Zhang, Shu ; Chen, Rongrong ; Wang, Lianmei ; Wu, Erxi ; Cai, Guifang ; Malinowska-Kolodziej, Izabela ; Liao, Qi ; Liu, Yuqin ; Zhao, Yi ; Sun, Qiang ; Xu, Kaifeng ; Dai, Jianwu ; Han, Jiahuai ; Wu, Lizi ; Zhao, Robert Chunhua ; Shen, Huangxuan ; Zhang, Hongbing</creatorcontrib><description>The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and human cells, acting through induction of the STAT3/p63/Jagged signaling cascade. Furthermore, in response to differential cues from mTOR, we found that Notch served as a molecular switch to shift the balance between cell proliferation and differentiation. We determined that hyperactive mTOR signaling impaired cell differentiation of murine embryonic fibroblasts via potentiation of Notch signaling. Elevated mTOR signaling strongly correlated with enhanced Notch signaling in poorly differentiated but not in well-differentiated human breast cancers. Both human lung lymphangioleiomyomatosis (LAM) and mouse kidney tumors with hyperactive mTOR due to tumor suppressor TSC1 or TSC2 deficiency exhibited enhanced STAT3/p63/Notch signaling. Furthermore, tumorigenic potential of cells with uncontrolled mTOR signaling was suppressed by Notch inhibition. Our data therefore suggest that perturbation of cell differentiation by augmented Notch signaling might be responsible for the underdifferentiated phenotype displayed by certain tumors with an aberrantly activated RTK/PI3K/AKT/mTOR pathway. Additionally, the STAT3/p63/Notch axis may be a useful target for the treatment of cancers exhibiting hyperactive mTOR signaling.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci37964</identifier><identifier>PMID: 20038814</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Biomedical research ; Breast cancer ; Calcium-Binding Proteins - physiology ; Cancer ; Care and treatment ; Cell Differentiation ; Cell growth ; Cell receptors ; Cells, Cultured ; Fibroblasts ; Health aspects ; Humans ; Intercellular Signaling Peptides and Proteins - physiology ; Jagged-1 Protein ; Kidneys ; Kinases ; Medical prognosis ; Membrane Proteins - physiology ; Mice ; Mice, Inbred BALB C ; Mutation ; NF-kappa B - physiology ; Phosphatidylinositol 3-Kinases - physiology ; Physiological aspects ; Properties ; Protein Kinases - physiology ; Receptors, Notch - physiology ; Serrate-Jagged Proteins ; Signal Transduction - physiology ; STAT3 Transcription Factor - physiology ; TOR Serine-Threonine Kinases ; Transcription Factors - physiology ; Tumorigenesis ; Tumors ; Tyrosine</subject><ispartof>The Journal of clinical investigation, 2010-01, Vol.120 (1), p.103-114</ispartof><rights>COPYRIGHT 2010 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Jan 2010</rights><rights>Copyright © 2010, American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-9817f95f8a117a7b7ff9639bfcf319a408b96414000ba1a0e4d886db39f9e1ca3</citedby><cites>FETCH-LOGICAL-c668t-9817f95f8a117a7b7ff9639bfcf319a408b96414000ba1a0e4d886db39f9e1ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798675/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798675/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20038814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Jianhui</creatorcontrib><creatorcontrib>Meng, Yan</creatorcontrib><creatorcontrib>Kwiatkowski, David J</creatorcontrib><creatorcontrib>Chen, Xinxin</creatorcontrib><creatorcontrib>Peng, Haiyong</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Zha, Xiaojun</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Jing, Yanling</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Chen, Rongrong</creatorcontrib><creatorcontrib>Wang, Lianmei</creatorcontrib><creatorcontrib>Wu, Erxi</creatorcontrib><creatorcontrib>Cai, Guifang</creatorcontrib><creatorcontrib>Malinowska-Kolodziej, Izabela</creatorcontrib><creatorcontrib>Liao, Qi</creatorcontrib><creatorcontrib>Liu, Yuqin</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Xu, Kaifeng</creatorcontrib><creatorcontrib>Dai, Jianwu</creatorcontrib><creatorcontrib>Han, Jiahuai</creatorcontrib><creatorcontrib>Wu, Lizi</creatorcontrib><creatorcontrib>Zhao, Robert Chunhua</creatorcontrib><creatorcontrib>Shen, Huangxuan</creatorcontrib><creatorcontrib>Zhang, Hongbing</creatorcontrib><title>Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and human cells, acting through induction of the STAT3/p63/Jagged signaling cascade. Furthermore, in response to differential cues from mTOR, we found that Notch served as a molecular switch to shift the balance between cell proliferation and differentiation. We determined that hyperactive mTOR signaling impaired cell differentiation of murine embryonic fibroblasts via potentiation of Notch signaling. Elevated mTOR signaling strongly correlated with enhanced Notch signaling in poorly differentiated but not in well-differentiated human breast cancers. Both human lung lymphangioleiomyomatosis (LAM) and mouse kidney tumors with hyperactive mTOR due to tumor suppressor TSC1 or TSC2 deficiency exhibited enhanced STAT3/p63/Notch signaling. Furthermore, tumorigenic potential of cells with uncontrolled mTOR signaling was suppressed by Notch inhibition. Our data therefore suggest that perturbation of cell differentiation by augmented Notch signaling might be responsible for the underdifferentiated phenotype displayed by certain tumors with an aberrantly activated RTK/PI3K/AKT/mTOR pathway. Additionally, the STAT3/p63/Notch axis may be a useful target for the treatment of cancers exhibiting hyperactive mTOR signaling.</description><subject>Animals</subject><subject>Biomedical research</subject><subject>Breast cancer</subject><subject>Calcium-Binding Proteins - physiology</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Differentiation</subject><subject>Cell growth</subject><subject>Cell receptors</subject><subject>Cells, Cultured</subject><subject>Fibroblasts</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - physiology</subject><subject>Jagged-1 Protein</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Medical prognosis</subject><subject>Membrane Proteins - physiology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mutation</subject><subject>NF-kappa B - physiology</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Protein Kinases - physiology</subject><subject>Receptors, Notch - physiology</subject><subject>Serrate-Jagged Proteins</subject><subject>Signal Transduction - physiology</subject><subject>STAT3 Transcription Factor - physiology</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - physiology</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Tyrosine</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqN0l1v0zAUBuAIgVgZSPwCFDGJj4usduzEzg1SVfHRaTCJFW6tE8dOXCVxsR3E_j0uHdOKesGVJfvxax_7JMlzjM4xZvl8Iw1hVUkfJDNcFDzjOeEPkxlCOc4qRvhJ8sT7DUKY0oI-Tk5yhAjnmM6S8BmGAXoDYxrAtSqkVqcOtjDcSDOmTrVTD0H5dJicGVUKY5N20xC5VH2fNkZr5dQYDARjY0bn7NR26fV6sSbzbUnmF9C2qpl_sUF2qQQvoVFPk0caeq-e3Y6nybcP79fLT9nl1cfVcnGZybLkIas4ZroqNIdYJLCaaV2VpKq11ARXQBGvY82YIoRqwIAUbTgvm5pUulJYAjlN3u1zt1M9qEbGezroxdaZAdyNsGDE4cpoOtHanyJnFS9ZEQNe3wY4-2NSPojB-F3hMCo7ecEIwbTkBYry5T9yYyc3xupEfOwC5YzziM72qIVeCTNqG0-Vu0ixyCmuKOWMRpUdUa0aVbyiHZU2cfrAnx_xsHvowcijG94ebIgmqF-hhcl7sbr--v_26vuhfXXPdgr60HnbT7vO8IfwzR5KZ713St99CUZi19DiYrn609CRvrj_hXfwbweT311A7QI</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Ma, Jianhui</creator><creator>Meng, Yan</creator><creator>Kwiatkowski, David J</creator><creator>Chen, Xinxin</creator><creator>Peng, Haiyong</creator><creator>Sun, Qian</creator><creator>Zha, Xiaojun</creator><creator>Wang, Fang</creator><creator>Wang, Ying</creator><creator>Jing, Yanling</creator><creator>Zhang, Shu</creator><creator>Chen, Rongrong</creator><creator>Wang, Lianmei</creator><creator>Wu, Erxi</creator><creator>Cai, Guifang</creator><creator>Malinowska-Kolodziej, Izabela</creator><creator>Liao, Qi</creator><creator>Liu, Yuqin</creator><creator>Zhao, Yi</creator><creator>Sun, Qiang</creator><creator>Xu, Kaifeng</creator><creator>Dai, Jianwu</creator><creator>Han, Jiahuai</creator><creator>Wu, Lizi</creator><creator>Zhao, Robert Chunhua</creator><creator>Shen, Huangxuan</creator><creator>Zhang, Hongbing</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade</title><author>Ma, Jianhui ; Meng, Yan ; Kwiatkowski, David J ; Chen, Xinxin ; Peng, Haiyong ; Sun, Qian ; Zha, Xiaojun ; Wang, Fang ; Wang, Ying ; Jing, Yanling ; Zhang, Shu ; Chen, Rongrong ; Wang, Lianmei ; Wu, Erxi ; Cai, Guifang ; Malinowska-Kolodziej, Izabela ; Liao, Qi ; Liu, Yuqin ; Zhao, Yi ; Sun, Qiang ; Xu, Kaifeng ; Dai, Jianwu ; Han, Jiahuai ; Wu, Lizi ; Zhao, Robert Chunhua ; Shen, Huangxuan ; Zhang, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-9817f95f8a117a7b7ff9639bfcf319a408b96414000ba1a0e4d886db39f9e1ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biomedical research</topic><topic>Breast cancer</topic><topic>Calcium-Binding Proteins - physiology</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Differentiation</topic><topic>Cell growth</topic><topic>Cell receptors</topic><topic>Cells, Cultured</topic><topic>Fibroblasts</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - physiology</topic><topic>Jagged-1 Protein</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Medical prognosis</topic><topic>Membrane Proteins - physiology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mutation</topic><topic>NF-kappa B - physiology</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Protein Kinases - physiology</topic><topic>Receptors, Notch - physiology</topic><topic>Serrate-Jagged Proteins</topic><topic>Signal Transduction - physiology</topic><topic>STAT3 Transcription Factor - physiology</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - physiology</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jianhui</creatorcontrib><creatorcontrib>Meng, Yan</creatorcontrib><creatorcontrib>Kwiatkowski, David J</creatorcontrib><creatorcontrib>Chen, Xinxin</creatorcontrib><creatorcontrib>Peng, Haiyong</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Zha, Xiaojun</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Jing, Yanling</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Chen, Rongrong</creatorcontrib><creatorcontrib>Wang, Lianmei</creatorcontrib><creatorcontrib>Wu, Erxi</creatorcontrib><creatorcontrib>Cai, Guifang</creatorcontrib><creatorcontrib>Malinowska-Kolodziej, Izabela</creatorcontrib><creatorcontrib>Liao, Qi</creatorcontrib><creatorcontrib>Liu, Yuqin</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Xu, Kaifeng</creatorcontrib><creatorcontrib>Dai, Jianwu</creatorcontrib><creatorcontrib>Han, Jiahuai</creatorcontrib><creatorcontrib>Wu, Lizi</creatorcontrib><creatorcontrib>Zhao, Robert Chunhua</creatorcontrib><creatorcontrib>Shen, Huangxuan</creatorcontrib><creatorcontrib>Zhang, Hongbing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jianhui</au><au>Meng, Yan</au><au>Kwiatkowski, David J</au><au>Chen, Xinxin</au><au>Peng, Haiyong</au><au>Sun, Qian</au><au>Zha, Xiaojun</au><au>Wang, Fang</au><au>Wang, Ying</au><au>Jing, Yanling</au><au>Zhang, Shu</au><au>Chen, Rongrong</au><au>Wang, Lianmei</au><au>Wu, Erxi</au><au>Cai, Guifang</au><au>Malinowska-Kolodziej, Izabela</au><au>Liao, Qi</au><au>Liu, Yuqin</au><au>Zhao, Yi</au><au>Sun, Qiang</au><au>Xu, Kaifeng</au><au>Dai, Jianwu</au><au>Han, Jiahuai</au><au>Wu, Lizi</au><au>Zhao, Robert Chunhua</au><au>Shen, Huangxuan</au><au>Zhang, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>120</volume><issue>1</issue><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and human cells, acting through induction of the STAT3/p63/Jagged signaling cascade. Furthermore, in response to differential cues from mTOR, we found that Notch served as a molecular switch to shift the balance between cell proliferation and differentiation. We determined that hyperactive mTOR signaling impaired cell differentiation of murine embryonic fibroblasts via potentiation of Notch signaling. Elevated mTOR signaling strongly correlated with enhanced Notch signaling in poorly differentiated but not in well-differentiated human breast cancers. Both human lung lymphangioleiomyomatosis (LAM) and mouse kidney tumors with hyperactive mTOR due to tumor suppressor TSC1 or TSC2 deficiency exhibited enhanced STAT3/p63/Notch signaling. Furthermore, tumorigenic potential of cells with uncontrolled mTOR signaling was suppressed by Notch inhibition. Our data therefore suggest that perturbation of cell differentiation by augmented Notch signaling might be responsible for the underdifferentiated phenotype displayed by certain tumors with an aberrantly activated RTK/PI3K/AKT/mTOR pathway. Additionally, the STAT3/p63/Notch axis may be a useful target for the treatment of cancers exhibiting hyperactive mTOR signaling.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>20038814</pmid><doi>10.1172/jci37964</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2010-01, Vol.120 (1), p.103-114 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2798675 |
source | Open Access: PubMed Central; EZB Electronic Journals Library |
subjects | Animals Biomedical research Breast cancer Calcium-Binding Proteins - physiology Cancer Care and treatment Cell Differentiation Cell growth Cell receptors Cells, Cultured Fibroblasts Health aspects Humans Intercellular Signaling Peptides and Proteins - physiology Jagged-1 Protein Kidneys Kinases Medical prognosis Membrane Proteins - physiology Mice Mice, Inbred BALB C Mutation NF-kappa B - physiology Phosphatidylinositol 3-Kinases - physiology Physiological aspects Properties Protein Kinases - physiology Receptors, Notch - physiology Serrate-Jagged Proteins Signal Transduction - physiology STAT3 Transcription Factor - physiology TOR Serine-Threonine Kinases Transcription Factors - physiology Tumorigenesis Tumors Tyrosine |
title | Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mammalian%20target%20of%20rapamycin%20regulates%20murine%20and%20human%20cell%20differentiation%20through%20STAT3/p63/Jagged/Notch%20cascade&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Ma,%20Jianhui&rft.date=2010-01-01&rft.volume=120&rft.issue=1&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci37964&rft_dat=%3Cgale_pubme%3EA241944874%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c668t-9817f95f8a117a7b7ff9639bfcf319a408b96414000ba1a0e4d886db39f9e1ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200502788&rft_id=info:pmid/20038814&rft_galeid=A241944874&rfr_iscdi=true |