Loading…

The principled control of false positives in neuroimaging

An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created tha...

Full description

Saved in:
Bibliographic Details
Published in:Social cognitive and affective neuroscience 2009-12, Vol.4 (4), p.417-422
Main Authors: Bennett, Craig M., Wolford, George L., Miller, Michael B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3
cites cdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3
container_end_page 422
container_issue 4
container_start_page 417
container_title Social cognitive and affective neuroscience
container_volume 4
creator Bennett, Craig M.
Wolford, George L.
Miller, Michael B.
description An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.
doi_str_mv 10.1093/scan/nsp053
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/scan/nsp053</oup_id><sourcerecordid>734218224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMotlZX7mVWupCxeY2ZbAQpvqDgpq5DXtNGZpJx0in4702dWnTjKpfcw3c_DgDnCN4gyMk0aumnPrawIAdgjBjleQExPdzP6HYETmJ8h7DgFJJjMMIQUkwJHgO-WNms7ZzXrq2tyXTw6y7UWaiyStYx7UJ0a7exMXM-87bvgmvk0vnlKTj6Js527wS8PT4sZs_5_PXpZXY_zzVlbJ1LowyRCnOuKecEVQQiaGlRkQJJztKnrpQylSqoJkaVBpUIylIyBpWsuCETcDfktr1qrNE2FZS1SJ0b2X2KIJ34u_FuJZZhIzDjnBcsBVztArrw0du4Fo2L2ta19Db0UTBCMSpx8jEB1wOpuxBjZ6v9FQTF1rXYuhaD60Rf_C62Z3_kJuByAELf_pv0Bb_0irU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734218224</pqid></control><display><type>article</type><title>The principled control of false positives in neuroimaging</title><source>Oxford Open</source><creator>Bennett, Craig M. ; Wolford, George L. ; Miller, Michael B.</creator><creatorcontrib>Bennett, Craig M. ; Wolford, George L. ; Miller, Michael B.</creatorcontrib><description>An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.</description><identifier>ISSN: 1749-5016</identifier><identifier>EISSN: 1749-5024</identifier><identifier>DOI: 10.1093/scan/nsp053</identifier><identifier>PMID: 20042432</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Brain - blood supply ; Brain - physiology ; Brain Mapping ; Data Interpretation, Statistical ; False Positive Reactions ; Humans ; Magnetic Resonance Imaging ; Tools of the Trade</subject><ispartof>Social cognitive and affective neuroscience, 2009-12, Vol.4 (4), p.417-422</ispartof><rights>The Author (2009). Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</citedby><cites>FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799957/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799957/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1601,27907,27908,53774,53776</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/scan/nsp053$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20042432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennett, Craig M.</creatorcontrib><creatorcontrib>Wolford, George L.</creatorcontrib><creatorcontrib>Miller, Michael B.</creatorcontrib><title>The principled control of false positives in neuroimaging</title><title>Social cognitive and affective neuroscience</title><addtitle>Soc Cogn Affect Neurosci</addtitle><description>An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.</description><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Data Interpretation, Statistical</subject><subject>False Positive Reactions</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Tools of the Trade</subject><issn>1749-5016</issn><issn>1749-5024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMotlZX7mVWupCxeY2ZbAQpvqDgpq5DXtNGZpJx0in4702dWnTjKpfcw3c_DgDnCN4gyMk0aumnPrawIAdgjBjleQExPdzP6HYETmJ8h7DgFJJjMMIQUkwJHgO-WNms7ZzXrq2tyXTw6y7UWaiyStYx7UJ0a7exMXM-87bvgmvk0vnlKTj6Js527wS8PT4sZs_5_PXpZXY_zzVlbJ1LowyRCnOuKecEVQQiaGlRkQJJztKnrpQylSqoJkaVBpUIylIyBpWsuCETcDfktr1qrNE2FZS1SJ0b2X2KIJ34u_FuJZZhIzDjnBcsBVztArrw0du4Fo2L2ta19Db0UTBCMSpx8jEB1wOpuxBjZ6v9FQTF1rXYuhaD60Rf_C62Z3_kJuByAELf_pv0Bb_0irU</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Bennett, Craig M.</creator><creator>Wolford, George L.</creator><creator>Miller, Michael B.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>The principled control of false positives in neuroimaging</title><author>Bennett, Craig M. ; Wolford, George L. ; Miller, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Data Interpretation, Statistical</topic><topic>False Positive Reactions</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Tools of the Trade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Craig M.</creatorcontrib><creatorcontrib>Wolford, George L.</creatorcontrib><creatorcontrib>Miller, Michael B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Social cognitive and affective neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bennett, Craig M.</au><au>Wolford, George L.</au><au>Miller, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The principled control of false positives in neuroimaging</atitle><jtitle>Social cognitive and affective neuroscience</jtitle><addtitle>Soc Cogn Affect Neurosci</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>4</volume><issue>4</issue><spage>417</spage><epage>422</epage><pages>417-422</pages><issn>1749-5016</issn><eissn>1749-5024</eissn><abstract>An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>20042432</pmid><doi>10.1093/scan/nsp053</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1749-5016
ispartof Social cognitive and affective neuroscience, 2009-12, Vol.4 (4), p.417-422
issn 1749-5016
1749-5024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799957
source Oxford Open
subjects Brain - blood supply
Brain - physiology
Brain Mapping
Data Interpretation, Statistical
False Positive Reactions
Humans
Magnetic Resonance Imaging
Tools of the Trade
title The principled control of false positives in neuroimaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20principled%20control%20of%20false%20positives%20in%20neuroimaging&rft.jtitle=Social%20cognitive%20and%20affective%20neuroscience&rft.au=Bennett,%20Craig%20M.&rft.date=2009-12-01&rft.volume=4&rft.issue=4&rft.spage=417&rft.epage=422&rft.pages=417-422&rft.issn=1749-5016&rft.eissn=1749-5024&rft_id=info:doi/10.1093/scan/nsp053&rft_dat=%3Cproquest_TOX%3E734218224%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734218224&rft_id=info:pmid/20042432&rft_oup_id=10.1093/scan/nsp053&rfr_iscdi=true