Loading…
The principled control of false positives in neuroimaging
An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created tha...
Saved in:
Published in: | Social cognitive and affective neuroscience 2009-12, Vol.4 (4), p.417-422 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3 |
container_end_page | 422 |
container_issue | 4 |
container_start_page | 417 |
container_title | Social cognitive and affective neuroscience |
container_volume | 4 |
creator | Bennett, Craig M. Wolford, George L. Miller, Michael B. |
description | An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results. |
doi_str_mv | 10.1093/scan/nsp053 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/scan/nsp053</oup_id><sourcerecordid>734218224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMotlZX7mVWupCxeY2ZbAQpvqDgpq5DXtNGZpJx0in4702dWnTjKpfcw3c_DgDnCN4gyMk0aumnPrawIAdgjBjleQExPdzP6HYETmJ8h7DgFJJjMMIQUkwJHgO-WNms7ZzXrq2tyXTw6y7UWaiyStYx7UJ0a7exMXM-87bvgmvk0vnlKTj6Js527wS8PT4sZs_5_PXpZXY_zzVlbJ1LowyRCnOuKecEVQQiaGlRkQJJztKnrpQylSqoJkaVBpUIylIyBpWsuCETcDfktr1qrNE2FZS1SJ0b2X2KIJ34u_FuJZZhIzDjnBcsBVztArrw0du4Fo2L2ta19Db0UTBCMSpx8jEB1wOpuxBjZ6v9FQTF1rXYuhaD60Rf_C62Z3_kJuByAELf_pv0Bb_0irU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734218224</pqid></control><display><type>article</type><title>The principled control of false positives in neuroimaging</title><source>Oxford Open</source><creator>Bennett, Craig M. ; Wolford, George L. ; Miller, Michael B.</creator><creatorcontrib>Bennett, Craig M. ; Wolford, George L. ; Miller, Michael B.</creatorcontrib><description>An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.</description><identifier>ISSN: 1749-5016</identifier><identifier>EISSN: 1749-5024</identifier><identifier>DOI: 10.1093/scan/nsp053</identifier><identifier>PMID: 20042432</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Brain - blood supply ; Brain - physiology ; Brain Mapping ; Data Interpretation, Statistical ; False Positive Reactions ; Humans ; Magnetic Resonance Imaging ; Tools of the Trade</subject><ispartof>Social cognitive and affective neuroscience, 2009-12, Vol.4 (4), p.417-422</ispartof><rights>The Author (2009). Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</citedby><cites>FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799957/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799957/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1601,27907,27908,53774,53776</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/scan/nsp053$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20042432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bennett, Craig M.</creatorcontrib><creatorcontrib>Wolford, George L.</creatorcontrib><creatorcontrib>Miller, Michael B.</creatorcontrib><title>The principled control of false positives in neuroimaging</title><title>Social cognitive and affective neuroscience</title><addtitle>Soc Cogn Affect Neurosci</addtitle><description>An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.</description><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Data Interpretation, Statistical</subject><subject>False Positive Reactions</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Tools of the Trade</subject><issn>1749-5016</issn><issn>1749-5024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMotlZX7mVWupCxeY2ZbAQpvqDgpq5DXtNGZpJx0in4702dWnTjKpfcw3c_DgDnCN4gyMk0aumnPrawIAdgjBjleQExPdzP6HYETmJ8h7DgFJJjMMIQUkwJHgO-WNms7ZzXrq2tyXTw6y7UWaiyStYx7UJ0a7exMXM-87bvgmvk0vnlKTj6Js527wS8PT4sZs_5_PXpZXY_zzVlbJ1LowyRCnOuKecEVQQiaGlRkQJJztKnrpQylSqoJkaVBpUIylIyBpWsuCETcDfktr1qrNE2FZS1SJ0b2X2KIJ34u_FuJZZhIzDjnBcsBVztArrw0du4Fo2L2ta19Db0UTBCMSpx8jEB1wOpuxBjZ6v9FQTF1rXYuhaD60Rf_C62Z3_kJuByAELf_pv0Bb_0irU</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Bennett, Craig M.</creator><creator>Wolford, George L.</creator><creator>Miller, Michael B.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>The principled control of false positives in neuroimaging</title><author>Bennett, Craig M. ; Wolford, George L. ; Miller, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Data Interpretation, Statistical</topic><topic>False Positive Reactions</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Tools of the Trade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bennett, Craig M.</creatorcontrib><creatorcontrib>Wolford, George L.</creatorcontrib><creatorcontrib>Miller, Michael B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Social cognitive and affective neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bennett, Craig M.</au><au>Wolford, George L.</au><au>Miller, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The principled control of false positives in neuroimaging</atitle><jtitle>Social cognitive and affective neuroscience</jtitle><addtitle>Soc Cogn Affect Neurosci</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>4</volume><issue>4</issue><spage>417</spage><epage>422</epage><pages>417-422</pages><issn>1749-5016</issn><eissn>1749-5024</eissn><abstract>An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem-one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>20042432</pmid><doi>10.1093/scan/nsp053</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1749-5016 |
ispartof | Social cognitive and affective neuroscience, 2009-12, Vol.4 (4), p.417-422 |
issn | 1749-5016 1749-5024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2799957 |
source | Oxford Open |
subjects | Brain - blood supply Brain - physiology Brain Mapping Data Interpretation, Statistical False Positive Reactions Humans Magnetic Resonance Imaging Tools of the Trade |
title | The principled control of false positives in neuroimaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20principled%20control%20of%20false%20positives%20in%20neuroimaging&rft.jtitle=Social%20cognitive%20and%20affective%20neuroscience&rft.au=Bennett,%20Craig%20M.&rft.date=2009-12-01&rft.volume=4&rft.issue=4&rft.spage=417&rft.epage=422&rft.pages=417-422&rft.issn=1749-5016&rft.eissn=1749-5024&rft_id=info:doi/10.1093/scan/nsp053&rft_dat=%3Cproquest_TOX%3E734218224%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-adbd3ab299c49931f3010e45f351a97c49cfbbdfb54c3db8d1810a8a770baf9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734218224&rft_id=info:pmid/20042432&rft_oup_id=10.1093/scan/nsp053&rfr_iscdi=true |