Loading…
Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence
Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The...
Saved in:
Published in: | Nucleic acids research 2010-01, Vol.38 (1), p.172-181 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3 |
container_end_page | 181 |
container_issue | 1 |
container_start_page | 172 |
container_title | Nucleic acids research |
container_volume | 38 |
creator | Harve, Karthik S Lareu, Ricky Rajagopalan, Raj Raghunath, Michael |
description | Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands. |
doi_str_mv | 10.1093/nar/gkp884 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734218633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS1ERdPChh8A3iEhTePnjL1BqsqjlSqQoF1bHvtOYpjYqT1J1S755bhNxGPFwvKV7ucjn3MQeknJCSWaz6PN88WPtVLiCZpR3rJG6JY9RTPCiWwoEeoQHZXynRAqqBTP0CHVSgrN5Qz9vI4ecpls9CEu8DLd4mkJ2OV068HjECfIIWWcBuxgHAuuaB_GcA8Fv_98Oq8H17eP89c6L-_6HHxpQsSlYi7hdQYf3BRSLI9k3WzDlBOGbfAQHTxHB4MdC7zY38fo6uOHq7Pz5vLLp4uz08vGCa2npnO918wxVT0L12kLcui9Zwq4JFZ4KgltXWcHBVryoa9OO2pl13YguB34MXq3k11v-hV4B3HKdjTrHFY235lkg_l3E8PSLNLWMEUI46IKvNkL5HSzgTKZVSgPodgIaVNMJ2SNVFL1f5ILRlXLeSXf7sgaeCkZht__ocQ8lGtquWZXboVf_e3gD7pvswKvd8Bgk7GLHIq5_sYI5YR2jLSK8F-7z6wL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734218633</pqid></control><display><type>article</type><title>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><creator>Harve, Karthik S ; Lareu, Ricky ; Rajagopalan, Raj ; Raghunath, Michael</creator><creatorcontrib>Harve, Karthik S ; Lareu, Ricky ; Rajagopalan, Raj ; Raghunath, Michael</creatorcontrib><description>Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkp884</identifier><identifier>PMID: 19854935</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Circular Dichroism ; Computational Biology ; DNA - chemistry ; Hot Temperature ; Hydrogen Bonding ; Models, Molecular ; Molecular Biology ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Nucleic Acid Denaturation ; Nucleic Acid Hybridization ; Polymerase Chain Reaction ; RNA - chemistry</subject><ispartof>Nucleic acids research, 2010-01, Vol.38 (1), p.172-181</ispartof><rights>The Author(s) 2009. Published by Oxford University Press. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</citedby><cites>FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800234/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800234/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19854935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harve, Karthik S</creatorcontrib><creatorcontrib>Lareu, Ricky</creatorcontrib><creatorcontrib>Rajagopalan, Raj</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><title>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.</description><subject>Circular Dichroism</subject><subject>Computational Biology</subject><subject>DNA - chemistry</subject><subject>Hot Temperature</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Molecular Biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Denaturation</subject><subject>Nucleic Acid Hybridization</subject><subject>Polymerase Chain Reaction</subject><subject>RNA - chemistry</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEUhS1ERdPChh8A3iEhTePnjL1BqsqjlSqQoF1bHvtOYpjYqT1J1S755bhNxGPFwvKV7ucjn3MQeknJCSWaz6PN88WPtVLiCZpR3rJG6JY9RTPCiWwoEeoQHZXynRAqqBTP0CHVSgrN5Qz9vI4ecpls9CEu8DLd4mkJ2OV068HjECfIIWWcBuxgHAuuaB_GcA8Fv_98Oq8H17eP89c6L-_6HHxpQsSlYi7hdQYf3BRSLI9k3WzDlBOGbfAQHTxHB4MdC7zY38fo6uOHq7Pz5vLLp4uz08vGCa2npnO918wxVT0L12kLcui9Zwq4JFZ4KgltXWcHBVryoa9OO2pl13YguB34MXq3k11v-hV4B3HKdjTrHFY235lkg_l3E8PSLNLWMEUI46IKvNkL5HSzgTKZVSgPodgIaVNMJ2SNVFL1f5ILRlXLeSXf7sgaeCkZht__ocQ8lGtquWZXboVf_e3gD7pvswKvd8Bgk7GLHIq5_sYI5YR2jLSK8F-7z6wL</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Harve, Karthik S</creator><creator>Lareu, Ricky</creator><creator>Rajagopalan, Raj</creator><creator>Raghunath, Michael</creator><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</title><author>Harve, Karthik S ; Lareu, Ricky ; Rajagopalan, Raj ; Raghunath, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Circular Dichroism</topic><topic>Computational Biology</topic><topic>DNA - chemistry</topic><topic>Hot Temperature</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Molecular Biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Denaturation</topic><topic>Nucleic Acid Hybridization</topic><topic>Polymerase Chain Reaction</topic><topic>RNA - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harve, Karthik S</creatorcontrib><creatorcontrib>Lareu, Ricky</creatorcontrib><creatorcontrib>Rajagopalan, Raj</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harve, Karthik S</au><au>Lareu, Ricky</au><au>Rajagopalan, Raj</au><au>Raghunath, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>38</volume><issue>1</issue><spage>172</spage><epage>181</epage><pages>172-181</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19854935</pmid><doi>10.1093/nar/gkp884</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2010-01, Vol.38 (1), p.172-181 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800234 |
source | Open Access: PubMed Central; Open Access: Oxford University Press Open Journals |
subjects | Circular Dichroism Computational Biology DNA - chemistry Hot Temperature Hydrogen Bonding Models, Molecular Molecular Biology Molecular Dynamics Simulation Nucleic Acid Conformation Nucleic Acid Denaturation Nucleic Acid Hybridization Polymerase Chain Reaction RNA - chemistry |
title | Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20how%20the%20crowded%20interior%20of%20cells%20stabilizes%20DNA/DNA%20and%20DNA/RNA%20hybrids-in%20silico%20predictions%20and%20in%20vitro%20evidence&rft.jtitle=Nucleic%20acids%20research&rft.au=Harve,%20Karthik%20S&rft.date=2010-01-01&rft.volume=38&rft.issue=1&rft.spage=172&rft.epage=181&rft.pages=172-181&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkp884&rft_dat=%3Cproquest_pubme%3E734218633%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734218633&rft_id=info:pmid/19854935&rfr_iscdi=true |