Loading…

Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence

Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2010-01, Vol.38 (1), p.172-181
Main Authors: Harve, Karthik S, Lareu, Ricky, Rajagopalan, Raj, Raghunath, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3
cites cdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3
container_end_page 181
container_issue 1
container_start_page 172
container_title Nucleic acids research
container_volume 38
creator Harve, Karthik S
Lareu, Ricky
Rajagopalan, Raj
Raghunath, Michael
description Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.
doi_str_mv 10.1093/nar/gkp884
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734218633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS1ERdPChh8A3iEhTePnjL1BqsqjlSqQoF1bHvtOYpjYqT1J1S755bhNxGPFwvKV7ucjn3MQeknJCSWaz6PN88WPtVLiCZpR3rJG6JY9RTPCiWwoEeoQHZXynRAqqBTP0CHVSgrN5Qz9vI4ecpls9CEu8DLd4mkJ2OV068HjECfIIWWcBuxgHAuuaB_GcA8Fv_98Oq8H17eP89c6L-_6HHxpQsSlYi7hdQYf3BRSLI9k3WzDlBOGbfAQHTxHB4MdC7zY38fo6uOHq7Pz5vLLp4uz08vGCa2npnO918wxVT0L12kLcui9Zwq4JFZ4KgltXWcHBVryoa9OO2pl13YguB34MXq3k11v-hV4B3HKdjTrHFY235lkg_l3E8PSLNLWMEUI46IKvNkL5HSzgTKZVSgPodgIaVNMJ2SNVFL1f5ILRlXLeSXf7sgaeCkZht__ocQ8lGtquWZXboVf_e3gD7pvswKvd8Bgk7GLHIq5_sYI5YR2jLSK8F-7z6wL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734218633</pqid></control><display><type>article</type><title>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</title><source>Open Access: PubMed Central</source><source>Open Access: Oxford University Press Open Journals</source><creator>Harve, Karthik S ; Lareu, Ricky ; Rajagopalan, Raj ; Raghunath, Michael</creator><creatorcontrib>Harve, Karthik S ; Lareu, Ricky ; Rajagopalan, Raj ; Raghunath, Michael</creatorcontrib><description>Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkp884</identifier><identifier>PMID: 19854935</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Circular Dichroism ; Computational Biology ; DNA - chemistry ; Hot Temperature ; Hydrogen Bonding ; Models, Molecular ; Molecular Biology ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Nucleic Acid Denaturation ; Nucleic Acid Hybridization ; Polymerase Chain Reaction ; RNA - chemistry</subject><ispartof>Nucleic acids research, 2010-01, Vol.38 (1), p.172-181</ispartof><rights>The Author(s) 2009. Published by Oxford University Press. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</citedby><cites>FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800234/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800234/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19854935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harve, Karthik S</creatorcontrib><creatorcontrib>Lareu, Ricky</creatorcontrib><creatorcontrib>Rajagopalan, Raj</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><title>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.</description><subject>Circular Dichroism</subject><subject>Computational Biology</subject><subject>DNA - chemistry</subject><subject>Hot Temperature</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Molecular Biology</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Denaturation</subject><subject>Nucleic Acid Hybridization</subject><subject>Polymerase Chain Reaction</subject><subject>RNA - chemistry</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEUhS1ERdPChh8A3iEhTePnjL1BqsqjlSqQoF1bHvtOYpjYqT1J1S755bhNxGPFwvKV7ucjn3MQeknJCSWaz6PN88WPtVLiCZpR3rJG6JY9RTPCiWwoEeoQHZXynRAqqBTP0CHVSgrN5Qz9vI4ecpls9CEu8DLd4mkJ2OV068HjECfIIWWcBuxgHAuuaB_GcA8Fv_98Oq8H17eP89c6L-_6HHxpQsSlYi7hdQYf3BRSLI9k3WzDlBOGbfAQHTxHB4MdC7zY38fo6uOHq7Pz5vLLp4uz08vGCa2npnO918wxVT0L12kLcui9Zwq4JFZ4KgltXWcHBVryoa9OO2pl13YguB34MXq3k11v-hV4B3HKdjTrHFY235lkg_l3E8PSLNLWMEUI46IKvNkL5HSzgTKZVSgPodgIaVNMJ2SNVFL1f5ILRlXLeSXf7sgaeCkZht__ocQ8lGtquWZXboVf_e3gD7pvswKvd8Bgk7GLHIq5_sYI5YR2jLSK8F-7z6wL</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Harve, Karthik S</creator><creator>Lareu, Ricky</creator><creator>Rajagopalan, Raj</creator><creator>Raghunath, Michael</creator><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</title><author>Harve, Karthik S ; Lareu, Ricky ; Rajagopalan, Raj ; Raghunath, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Circular Dichroism</topic><topic>Computational Biology</topic><topic>DNA - chemistry</topic><topic>Hot Temperature</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Molecular Biology</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Denaturation</topic><topic>Nucleic Acid Hybridization</topic><topic>Polymerase Chain Reaction</topic><topic>RNA - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harve, Karthik S</creatorcontrib><creatorcontrib>Lareu, Ricky</creatorcontrib><creatorcontrib>Rajagopalan, Raj</creatorcontrib><creatorcontrib>Raghunath, Michael</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harve, Karthik S</au><au>Lareu, Ricky</au><au>Rajagopalan, Raj</au><au>Raghunath, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>38</volume><issue>1</issue><spage>172</spage><epage>181</epage><pages>172-181</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Amplification of DNA in vivo occurs in intracellular environments characterized by macromolecular crowding (MMC). In vitro Polymerase-chain-reaction (PCR), however, is non-crowded, requires thermal cycling for melting of DNA strands, primer-template hybridization and enzymatic primer-extension. The temperature-optima for primer-annealing and extension are strikingly disparate which predicts primers to dissociate from template during extension thereby compromising PCR efficiency. We hypothesized that MMC is not only important for the extension phase in vivo but also during PCR by stabilizing nucleotide hybrids. Novel atomistic Molecular Dynamics simulations elucidated that MMC stabilizes hydrogen-bonding between complementary nucleotides. Real-time PCR under MMC confirmed that melting-temperatures of complementary DNA-DNA and DNA-RNA hybrids increased by up to 8°C with high specificity and high duplex-preservation after extension (71% versus 37% non-crowded). MMC enhanced DNA hybrid-helicity, and drove specificity of duplex formation preferring matching versus mismatched sequences, including hair-pin-forming DNA- single-strands.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19854935</pmid><doi>10.1093/nar/gkp884</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2010-01, Vol.38 (1), p.172-181
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800234
source Open Access: PubMed Central; Open Access: Oxford University Press Open Journals
subjects Circular Dichroism
Computational Biology
DNA - chemistry
Hot Temperature
Hydrogen Bonding
Models, Molecular
Molecular Biology
Molecular Dynamics Simulation
Nucleic Acid Conformation
Nucleic Acid Denaturation
Nucleic Acid Hybridization
Polymerase Chain Reaction
RNA - chemistry
title Understanding how the crowded interior of cells stabilizes DNA/DNA and DNA/RNA hybrids-in silico predictions and in vitro evidence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20how%20the%20crowded%20interior%20of%20cells%20stabilizes%20DNA/DNA%20and%20DNA/RNA%20hybrids-in%20silico%20predictions%20and%20in%20vitro%20evidence&rft.jtitle=Nucleic%20acids%20research&rft.au=Harve,%20Karthik%20S&rft.date=2010-01-01&rft.volume=38&rft.issue=1&rft.spage=172&rft.epage=181&rft.pages=172-181&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkp884&rft_dat=%3Cproquest_pubme%3E734218633%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-7cbd92c281094c79ae5fbdd28e350a4d15016c7af8e953fb15471a5767e43af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734218633&rft_id=info:pmid/19854935&rfr_iscdi=true