Loading…
Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations
We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to des...
Saved in:
Published in: | Biophysical journal 2010-01, Vol.98 (1), p.101-110 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3 |
container_end_page | 110 |
container_issue | 1 |
container_start_page | 101 |
container_title | Biophysical journal |
container_volume | 98 |
creator | Řezáč, Jan Hobza, Pavel Harris, Sarah A. |
description | We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed. |
doi_str_mv | 10.1016/j.bpj.2009.08.062 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509015628</els_id><sourcerecordid>36353485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</originalsourceid><addsrcrecordid>eNqFkk-LFDEQxYMo7rj6AbxI40FP3VaSTtKNICyz_lnYVUQXjyGd1Myk6UmPSffAfnszzLqoh_UUqPzqFfXqEfKcQkWByjd91e36igG0FTQVSPaALKioWQnQyIdkAQCy5HUrTsiTlHoAygTQx-Qkt6haULEgP75NESe7QVecfz4rLsIe0-TXZsqF6-TDurgaB7TzYGJ5fhPM1ttUmOCKr7MJ07wtr9BuTPDWDMXSDAdw8mNIT8mjlRkSPrt9T8n1h_ffl5_Kyy8fL5Znl6UVvJ1KZbnCDrgTLUfBUDToHDhprVkh7xpJ206IxiiQgjElM6ZsqzhzohMWHD8l7466u7nborMYpmgGvYt-a-KNHo3Xf_8Ev9Hrca9Zk22TNAu8vhWI4885L6-3PlkcBhNwnJNWvGY1z6Mz-epekksueN2I_4KM8hoUbzP48h-wH-cYsl-ZEbJVqjmMpUfIxjGliKu75SjoQwx0r3MM9CEGGhqdY5B7Xvzpyl3H77tn4O0RwHybvceok_UYLDof0U7ajf4e-V-LvsLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215697786</pqid></control><display><type>article</type><title>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</title><source>PubMed Central</source><creator>Řezáč, Jan ; Hobza, Pavel ; Harris, Sarah A.</creator><creatorcontrib>Řezáč, Jan ; Hobza, Pavel ; Harris, Sarah A.</creatorcontrib><description>We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.08.062</identifier><identifier>PMID: 20074515</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - ultrastructure ; Elastic Modulus ; Kinetics ; Models, Chemical ; Models, Molecular ; Nucleic Acid ; Nucleic Acid Conformation ; Quantum physics ; Quantum Theory ; Simulation ; Stress, Mechanical</subject><ispartof>Biophysical journal, 2010-01, Vol.98 (1), p.101-110</ispartof><rights>2010 Biophysical Society</rights><rights>Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jan 6, 2010</rights><rights>2010 by the Biophysical Society.. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</citedby><cites>FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800961/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800961/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20074515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Harris, Sarah A.</creatorcontrib><title>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.</description><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>Elastic Modulus</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nucleic Acid</subject><subject>Nucleic Acid Conformation</subject><subject>Quantum physics</subject><subject>Quantum Theory</subject><subject>Simulation</subject><subject>Stress, Mechanical</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkk-LFDEQxYMo7rj6AbxI40FP3VaSTtKNICyz_lnYVUQXjyGd1Myk6UmPSffAfnszzLqoh_UUqPzqFfXqEfKcQkWByjd91e36igG0FTQVSPaALKioWQnQyIdkAQCy5HUrTsiTlHoAygTQx-Qkt6haULEgP75NESe7QVecfz4rLsIe0-TXZsqF6-TDurgaB7TzYGJ5fhPM1ttUmOCKr7MJ07wtr9BuTPDWDMXSDAdw8mNIT8mjlRkSPrt9T8n1h_ffl5_Kyy8fL5Znl6UVvJ1KZbnCDrgTLUfBUDToHDhprVkh7xpJ206IxiiQgjElM6ZsqzhzohMWHD8l7466u7nborMYpmgGvYt-a-KNHo3Xf_8Ev9Hrca9Zk22TNAu8vhWI4885L6-3PlkcBhNwnJNWvGY1z6Mz-epekksueN2I_4KM8hoUbzP48h-wH-cYsl-ZEbJVqjmMpUfIxjGliKu75SjoQwx0r3MM9CEGGhqdY5B7Xvzpyl3H77tn4O0RwHybvceok_UYLDof0U7ajf4e-V-LvsLk</recordid><startdate>20100106</startdate><enddate>20100106</enddate><creator>Řezáč, Jan</creator><creator>Hobza, Pavel</creator><creator>Harris, Sarah A.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100106</creationdate><title>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</title><author>Řezáč, Jan ; Hobza, Pavel ; Harris, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>Elastic Modulus</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nucleic Acid</topic><topic>Nucleic Acid Conformation</topic><topic>Quantum physics</topic><topic>Quantum Theory</topic><topic>Simulation</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Harris, Sarah A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Řezáč, Jan</au><au>Hobza, Pavel</au><au>Harris, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-01-06</date><risdate>2010</risdate><volume>98</volume><issue>1</issue><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20074515</pmid><doi>10.1016/j.bpj.2009.08.062</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2010-01, Vol.98 (1), p.101-110 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800961 |
source | PubMed Central |
subjects | Computer Simulation Deoxyribonucleic acid DNA DNA - chemistry DNA - ultrastructure Elastic Modulus Kinetics Models, Chemical Models, Molecular Nucleic Acid Nucleic Acid Conformation Quantum physics Quantum Theory Simulation Stress, Mechanical |
title | Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretched%20DNA%20Investigated%20Using%20Molecular-Dynamics%20and%20Quantum-Mechanical%20Calculations&rft.jtitle=Biophysical%20journal&rft.au=%C5%98ez%C3%A1%C4%8D,%20Jan&rft.date=2010-01-06&rft.volume=98&rft.issue=1&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.08.062&rft_dat=%3Cproquest_pubme%3E36353485%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215697786&rft_id=info:pmid/20074515&rfr_iscdi=true |