Loading…

Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations

We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to des...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2010-01, Vol.98 (1), p.101-110
Main Authors: Řezáč, Jan, Hobza, Pavel, Harris, Sarah A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3
cites cdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3
container_end_page 110
container_issue 1
container_start_page 101
container_title Biophysical journal
container_volume 98
creator Řezáč, Jan
Hobza, Pavel
Harris, Sarah A.
description We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.
doi_str_mv 10.1016/j.bpj.2009.08.062
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509015628</els_id><sourcerecordid>36353485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</originalsourceid><addsrcrecordid>eNqFkk-LFDEQxYMo7rj6AbxI40FP3VaSTtKNICyz_lnYVUQXjyGd1Myk6UmPSffAfnszzLqoh_UUqPzqFfXqEfKcQkWByjd91e36igG0FTQVSPaALKioWQnQyIdkAQCy5HUrTsiTlHoAygTQx-Qkt6haULEgP75NESe7QVecfz4rLsIe0-TXZsqF6-TDurgaB7TzYGJ5fhPM1ttUmOCKr7MJ07wtr9BuTPDWDMXSDAdw8mNIT8mjlRkSPrt9T8n1h_ffl5_Kyy8fL5Znl6UVvJ1KZbnCDrgTLUfBUDToHDhprVkh7xpJ206IxiiQgjElM6ZsqzhzohMWHD8l7466u7nborMYpmgGvYt-a-KNHo3Xf_8Ev9Hrca9Zk22TNAu8vhWI4885L6-3PlkcBhNwnJNWvGY1z6Mz-epekksueN2I_4KM8hoUbzP48h-wH-cYsl-ZEbJVqjmMpUfIxjGliKu75SjoQwx0r3MM9CEGGhqdY5B7Xvzpyl3H77tn4O0RwHybvceok_UYLDof0U7ajf4e-V-LvsLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215697786</pqid></control><display><type>article</type><title>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</title><source>PubMed Central</source><creator>Řezáč, Jan ; Hobza, Pavel ; Harris, Sarah A.</creator><creatorcontrib>Řezáč, Jan ; Hobza, Pavel ; Harris, Sarah A.</creatorcontrib><description>We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.08.062</identifier><identifier>PMID: 20074515</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - ultrastructure ; Elastic Modulus ; Kinetics ; Models, Chemical ; Models, Molecular ; Nucleic Acid ; Nucleic Acid Conformation ; Quantum physics ; Quantum Theory ; Simulation ; Stress, Mechanical</subject><ispartof>Biophysical journal, 2010-01, Vol.98 (1), p.101-110</ispartof><rights>2010 Biophysical Society</rights><rights>Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jan 6, 2010</rights><rights>2010 by the Biophysical Society.. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</citedby><cites>FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800961/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800961/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20074515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Harris, Sarah A.</creatorcontrib><title>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.</description><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>Elastic Modulus</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nucleic Acid</subject><subject>Nucleic Acid Conformation</subject><subject>Quantum physics</subject><subject>Quantum Theory</subject><subject>Simulation</subject><subject>Stress, Mechanical</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkk-LFDEQxYMo7rj6AbxI40FP3VaSTtKNICyz_lnYVUQXjyGd1Myk6UmPSffAfnszzLqoh_UUqPzqFfXqEfKcQkWByjd91e36igG0FTQVSPaALKioWQnQyIdkAQCy5HUrTsiTlHoAygTQx-Qkt6haULEgP75NESe7QVecfz4rLsIe0-TXZsqF6-TDurgaB7TzYGJ5fhPM1ttUmOCKr7MJ07wtr9BuTPDWDMXSDAdw8mNIT8mjlRkSPrt9T8n1h_ffl5_Kyy8fL5Znl6UVvJ1KZbnCDrgTLUfBUDToHDhprVkh7xpJ206IxiiQgjElM6ZsqzhzohMWHD8l7466u7nborMYpmgGvYt-a-KNHo3Xf_8Ev9Hrca9Zk22TNAu8vhWI4885L6-3PlkcBhNwnJNWvGY1z6Mz-epekksueN2I_4KM8hoUbzP48h-wH-cYsl-ZEbJVqjmMpUfIxjGliKu75SjoQwx0r3MM9CEGGhqdY5B7Xvzpyl3H77tn4O0RwHybvceok_UYLDof0U7ajf4e-V-LvsLk</recordid><startdate>20100106</startdate><enddate>20100106</enddate><creator>Řezáč, Jan</creator><creator>Hobza, Pavel</creator><creator>Harris, Sarah A.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100106</creationdate><title>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</title><author>Řezáč, Jan ; Hobza, Pavel ; Harris, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>Elastic Modulus</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nucleic Acid</topic><topic>Nucleic Acid Conformation</topic><topic>Quantum physics</topic><topic>Quantum Theory</topic><topic>Simulation</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Harris, Sarah A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Řezáč, Jan</au><au>Hobza, Pavel</au><au>Harris, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-01-06</date><risdate>2010</risdate><volume>98</volume><issue>1</issue><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20074515</pmid><doi>10.1016/j.bpj.2009.08.062</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2010-01, Vol.98 (1), p.101-110
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2800961
source PubMed Central
subjects Computer Simulation
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - ultrastructure
Elastic Modulus
Kinetics
Models, Chemical
Models, Molecular
Nucleic Acid
Nucleic Acid Conformation
Quantum physics
Quantum Theory
Simulation
Stress, Mechanical
title Stretched DNA Investigated Using Molecular-Dynamics and Quantum-Mechanical Calculations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretched%20DNA%20Investigated%20Using%20Molecular-Dynamics%20and%20Quantum-Mechanical%20Calculations&rft.jtitle=Biophysical%20journal&rft.au=%C5%98ez%C3%A1%C4%8D,%20Jan&rft.date=2010-01-06&rft.volume=98&rft.issue=1&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.08.062&rft_dat=%3Cproquest_pubme%3E36353485%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-7c37eb03d593e52e58edd0d6ccafe3b8619b558a706522765937c9732d5b5c0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215697786&rft_id=info:pmid/20074515&rfr_iscdi=true