Loading…
Nanoscale Cellular Changes in Field Carcinogenesis Detected by Partial Wave Spectroscopy
Understanding alteration of cell morphology in disease has been hampered by the diffraction-limited resolution of optical microscopy (>200 nm). We recently developed an optical microscopy technique, partial wave spectroscopy (PWS), which is capable of quantifying statistical properties of cell st...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2009-07, Vol.69 (13), p.5357-5363 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding alteration of cell morphology in disease has been hampered by the diffraction-limited resolution of optical microscopy (>200 nm). We recently developed an optical microscopy technique, partial wave spectroscopy (PWS), which is capable of quantifying statistical properties of cell structure at the nanoscale. Here we use PWS to show for the first time the increase in the disorder strength of the nanoscale architecture not only in tumor cells but also in the microscopically normal-appearing cells outside of the tumor. Although genetic and epigenetic alterations have been previously observed in the field of carcinogenesis, these cells were considered morphologically normal. Our data show organ-wide alteration in cell nanoarchitecture. This seems to be a general event in carcinogenesis, which is supported by our data in three types of cancer: colon, pancreatic, and lung. These results have important implications in that PWS can be used as a new method to identify patients harboring malignant or premalignant tumors by interrogating easily accessible tissue sites distant from the location of the lesion. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-08-3895 |