Loading…
The Adenomatous Polyposis Coli Protein Is an Essential Regulator of Radial Glial Polarity and Construction of the Cerebral Cortex
Radial glia are highly polarized cells that serve as neuronal progenitors and as scaffolds for neuronal migration during construction of the cerebral cortex. How radial glial cells establish and maintain their morphological polarity is unknown. Using conditional gene targeting in mice, we demonstrat...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2009-01, Vol.61 (1), p.42-56 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radial glia are highly polarized cells that serve as neuronal progenitors and as scaffolds for neuronal migration during construction of the cerebral cortex. How radial glial cells establish and maintain their morphological polarity is unknown. Using conditional gene targeting in mice, we demonstrate that adenomatous polyposis coli (
APC) serves an essential function in the maintenance of polarized radial glial scaffold during brain development. In the absence of APC, radial glial cells lose their polarity and responsiveness to the extracellular polarity maintenance cues, such as neuregulin-1. Elimination of APC further leads to marked instability of the radial glial microtubule cytoskeleton. The resultant changes in radial glial function and loss of APC in radial glial progeny lead to defective generation and migration of cortical neurons, severely disrupted cortical layer formation, and aberrant axonal tract development. Thus, APC is an essential regulator of radial glial polarity and is critical for the construction of cerebral cortex in mammals. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2008.10.053 |