Loading…

Lafora disease: insights into neurodegeneration from plant metabolism

Reversible phosphorylation modulates nearly every step of glycogenesis and glycogenolysis. Multiple metabolic disorders are the result of defective enzymes that control these phosphorylation events, enzymes that were identified biochemically before the advent of the molecular biology era. Lafora dis...

Full description

Saved in:
Bibliographic Details
Published in:Trends in biochemical sciences (Amsterdam. Regular ed.) 2009-12, Vol.34 (12), p.628-639
Main Authors: Gentry, Matthew S., Dixon, Jack E., Worby, Carolyn A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reversible phosphorylation modulates nearly every step of glycogenesis and glycogenolysis. Multiple metabolic disorders are the result of defective enzymes that control these phosphorylation events, enzymes that were identified biochemically before the advent of the molecular biology era. Lafora disease is a metabolic disorder resulting in accumulation of water-insoluble glucan in the cytoplasm, and manifests as a debilitating neurodegeneration that ends with the death of the patient. Unlike most metabolic disorders, the link between Lafora disease and metabolism has not been defined in almost 100 years. The results of recent studies with mammalian cells, mouse models, eukaryotic algae, and plants have begun to define the molecular mechanisms that cause Lafora disease. The emerging theme identifies a new phosphorylation substrate in glycogen metabolism, the glucan itself.
ISSN:0968-0004
1362-4326
DOI:10.1016/j.tibs.2009.08.002