Loading…

Cluster Analysis of Insulin Action in Adipocytes Reveals a Key Role for Akt at the Plasma Membrane

The phosphatidylinositol 3-kinase/Akt pathway regulates many biological processes, including insulin-regulated GLUT4 insertion into the plasma membrane. However, Akt operates well below its capacity to facilitate maximal GLUT4 translocation. Thus, reconciling modest changes in Akt expression or acti...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-01, Vol.285 (4), p.2245-2257
Main Authors: Ng, Yvonne, Ramm, Georg, Burchfield, James G., Coster, Adelle C.F., Stöckli, Jacqueline, James, David E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The phosphatidylinositol 3-kinase/Akt pathway regulates many biological processes, including insulin-regulated GLUT4 insertion into the plasma membrane. However, Akt operates well below its capacity to facilitate maximal GLUT4 translocation. Thus, reconciling modest changes in Akt expression or activity as a cause of metabolic dysfunction is complex. To resolve this, we examined insulin regulation of components within the signaling cascade in a quantitative kinetic and dose-response study combined with hierarchical cluster analysis. This revealed a strong relationship between phosphorylation of Akt substrates and GLUT4 translocation but not whole cell Akt phosphorylation. In contrast, Akt activity at the plasma membrane strongly correlated with GLUT4 translocation and Akt substrate phosphorylation. Additionally, two of the phosphorylated sites in the Akt substrate AS160 clustered separately, with Thr(P)-642 grouped with other Akt substrates. Further experiments suggested that atypical protein kinase Cζ phosphorylates AS160 at Ser-588 and that these two sites are mutually exclusive. These data indicate the utility of hierarchical cluster analysis for identifying functionally related biological nodes and highlight the importance of subcellular partitioning of key signaling components for biological specificity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.060236