Loading…

Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance

To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na⁺ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal elec...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2009-12, Vol.21 (12), p.4044-4058
Main Authors: Barkla, Bronwyn J, Vera-Estrella, Rosario, Hernández-Coronado, Marcela, Pantoja, Omar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-c998f236ce179684ed045aaebcc896fdc5e718e3382abbd33bfdab65a41197063
cites cdi_FETCH-LOGICAL-c528t-c998f236ce179684ed045aaebcc896fdc5e718e3382abbd33bfdab65a41197063
container_end_page 4058
container_issue 12
container_start_page 4044
container_title The Plant cell
container_volume 21
creator Barkla, Bronwyn J
Vera-Estrella, Rosario
Hernández-Coronado, Marcela
Pantoja, Omar
description To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na⁺ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H⁺-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H⁺-pump activity.
doi_str_mv 10.1105/tpc.109.069211
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537568</jstor_id><sourcerecordid>40537568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-c998f236ce179684ed045aaebcc896fdc5e718e3382abbd33bfdab65a41197063</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxQdRbK1u3anBjat55nMm2RSktFUoqP0AdzGTudPmkZk8k8yD17_elKkPdZUL53fOzeVU1WuCV4Rg8TFv7IpgtcKNooQ8qQ6JYLSmSv54WmbMcc0bQQ6qFymtMcakJep5dUAxplJyclj9_D6bKbtsstsC-hZDhjA6m1AYUL4DdB2msPEmZXQJWzA-IYMugwc0hIjO_c4Gv8vOotPpfjdCQm5CV8bn4vMQzWThZfVsKDZ49fgeVTdnp9cnn-uLr-dfTj5d1FZQmWurlBwoayyQVjWSQ4-5MAY6a6Vqht4KaIkExiQ1Xdcz1g296RphOCGqxQ07qo6X3M3cjdBbmHI0Xm-iG03c6WCc_leZ3J2-DVtNJeEC4xLw4TEghl8zpKxHlyx4byYIc9Jt2S0F520h3_9HrsMcp3KdpkS2SikqC7RaIBtDShGG_VcI1g_V6VJdmZVeqiuGt38fsMf_dFWANwuwTjnEvc6xYK1oHja-W_TBBG1uo0v65opiwkrrquVKst-NQ6l3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218799928</pqid></control><display><type>article</type><title>Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Barkla, Bronwyn J ; Vera-Estrella, Rosario ; Hernández-Coronado, Marcela ; Pantoja, Omar</creator><creatorcontrib>Barkla, Bronwyn J ; Vera-Estrella, Rosario ; Hernández-Coronado, Marcela ; Pantoja, Omar</creatorcontrib><description>To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na⁺ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H⁺-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H⁺-pump activity.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.109.069211</identifier><identifier>PMID: 20028841</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Arabidopsis - enzymology ; Arabidopsis - genetics ; ATP ; Electrophoresis ; Electrophoresis, Gel, Two-Dimensional ; Enzymes ; Fructose-Bisphosphate Aldolase - genetics ; Fructose-Bisphosphate Aldolase - metabolism ; Gels ; Gene expression regulation ; Gene Expression Regulation, Plant ; Mesembryanthemum - enzymology ; Mesembryanthemum - genetics ; Microsomes ; Phosphopyruvate Hydratase - genetics ; Phosphopyruvate Hydratase - metabolism ; Physiological regulation ; Plants ; Proteome - metabolism ; Proteomics ; Salt tolerance ; Salt-Tolerant Plants - enzymology ; Salt-Tolerant Plants - genetics ; Salts ; Sodium Chloride - metabolism ; Spectrometry, Mass, Electrospray Ionization ; Tonoplast ; Vacuolar Proton-Translocating ATPases - genetics ; Vacuolar Proton-Translocating ATPases - metabolism ; Vacuoles ; Vacuoles - metabolism ; Yeasts</subject><ispartof>The Plant cell, 2009-12, Vol.21 (12), p.4044-4058</ispartof><rights>Copyright 2010 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Dec 2009</rights><rights>Copyright © 2009, American Society of Plant Biologists 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-c998f236ce179684ed045aaebcc896fdc5e718e3382abbd33bfdab65a41197063</citedby><cites>FETCH-LOGICAL-c528t-c998f236ce179684ed045aaebcc896fdc5e718e3382abbd33bfdab65a41197063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537568$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537568$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20028841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barkla, Bronwyn J</creatorcontrib><creatorcontrib>Vera-Estrella, Rosario</creatorcontrib><creatorcontrib>Hernández-Coronado, Marcela</creatorcontrib><creatorcontrib>Pantoja, Omar</creatorcontrib><title>Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na⁺ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H⁺-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H⁺-pump activity.</description><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>ATP</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Enzymes</subject><subject>Fructose-Bisphosphate Aldolase - genetics</subject><subject>Fructose-Bisphosphate Aldolase - metabolism</subject><subject>Gels</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Mesembryanthemum - enzymology</subject><subject>Mesembryanthemum - genetics</subject><subject>Microsomes</subject><subject>Phosphopyruvate Hydratase - genetics</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Physiological regulation</subject><subject>Plants</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Salt tolerance</subject><subject>Salt-Tolerant Plants - enzymology</subject><subject>Salt-Tolerant Plants - genetics</subject><subject>Salts</subject><subject>Sodium Chloride - metabolism</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Tonoplast</subject><subject>Vacuolar Proton-Translocating ATPases - genetics</subject><subject>Vacuolar Proton-Translocating ATPases - metabolism</subject><subject>Vacuoles</subject><subject>Vacuoles - metabolism</subject><subject>Yeasts</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rFTEUxQdRbK1u3anBjat55nMm2RSktFUoqP0AdzGTudPmkZk8k8yD17_elKkPdZUL53fOzeVU1WuCV4Rg8TFv7IpgtcKNooQ8qQ6JYLSmSv54WmbMcc0bQQ6qFymtMcakJep5dUAxplJyclj9_D6bKbtsstsC-hZDhjA6m1AYUL4DdB2msPEmZXQJWzA-IYMugwc0hIjO_c4Gv8vOotPpfjdCQm5CV8bn4vMQzWThZfVsKDZ49fgeVTdnp9cnn-uLr-dfTj5d1FZQmWurlBwoayyQVjWSQ4-5MAY6a6Vqht4KaIkExiQ1Xdcz1g296RphOCGqxQ07qo6X3M3cjdBbmHI0Xm-iG03c6WCc_leZ3J2-DVtNJeEC4xLw4TEghl8zpKxHlyx4byYIc9Jt2S0F520h3_9HrsMcp3KdpkS2SikqC7RaIBtDShGG_VcI1g_V6VJdmZVeqiuGt38fsMf_dFWANwuwTjnEvc6xYK1oHja-W_TBBG1uo0v65opiwkrrquVKst-NQ6l3</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Barkla, Bronwyn J</creator><creator>Vera-Estrella, Rosario</creator><creator>Hernández-Coronado, Marcela</creator><creator>Pantoja, Omar</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance</title><author>Barkla, Bronwyn J ; Vera-Estrella, Rosario ; Hernández-Coronado, Marcela ; Pantoja, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-c998f236ce179684ed045aaebcc896fdc5e718e3382abbd33bfdab65a41197063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>ATP</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Enzymes</topic><topic>Fructose-Bisphosphate Aldolase - genetics</topic><topic>Fructose-Bisphosphate Aldolase - metabolism</topic><topic>Gels</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Mesembryanthemum - enzymology</topic><topic>Mesembryanthemum - genetics</topic><topic>Microsomes</topic><topic>Phosphopyruvate Hydratase - genetics</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Physiological regulation</topic><topic>Plants</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Salt tolerance</topic><topic>Salt-Tolerant Plants - enzymology</topic><topic>Salt-Tolerant Plants - genetics</topic><topic>Salts</topic><topic>Sodium Chloride - metabolism</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Tonoplast</topic><topic>Vacuolar Proton-Translocating ATPases - genetics</topic><topic>Vacuolar Proton-Translocating ATPases - metabolism</topic><topic>Vacuoles</topic><topic>Vacuoles - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barkla, Bronwyn J</creatorcontrib><creatorcontrib>Vera-Estrella, Rosario</creatorcontrib><creatorcontrib>Hernández-Coronado, Marcela</creatorcontrib><creatorcontrib>Pantoja, Omar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barkla, Bronwyn J</au><au>Vera-Estrella, Rosario</au><au>Hernández-Coronado, Marcela</au><au>Pantoja, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>21</volume><issue>12</issue><spage>4044</spage><epage>4058</epage><pages>4044-4058</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na⁺ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H⁺-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H⁺-pump activity.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>20028841</pmid><doi>10.1105/tpc.109.069211</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2009-12, Vol.21 (12), p.4044-4058
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814500
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Arabidopsis - enzymology
Arabidopsis - genetics
ATP
Electrophoresis
Electrophoresis, Gel, Two-Dimensional
Enzymes
Fructose-Bisphosphate Aldolase - genetics
Fructose-Bisphosphate Aldolase - metabolism
Gels
Gene expression regulation
Gene Expression Regulation, Plant
Mesembryanthemum - enzymology
Mesembryanthemum - genetics
Microsomes
Phosphopyruvate Hydratase - genetics
Phosphopyruvate Hydratase - metabolism
Physiological regulation
Plants
Proteome - metabolism
Proteomics
Salt tolerance
Salt-Tolerant Plants - enzymology
Salt-Tolerant Plants - genetics
Salts
Sodium Chloride - metabolism
Spectrometry, Mass, Electrospray Ionization
Tonoplast
Vacuolar Proton-Translocating ATPases - genetics
Vacuolar Proton-Translocating ATPases - metabolism
Vacuoles
Vacuoles - metabolism
Yeasts
title Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Proteomics%20of%20the%20Tonoplast%20Reveals%20a%20Role%20for%20Glycolytic%20Enzymes%20in%20Salt%20Tolerance&rft.jtitle=The%20Plant%20cell&rft.au=Barkla,%20Bronwyn%20J&rft.date=2009-12-01&rft.volume=21&rft.issue=12&rft.spage=4044&rft.epage=4058&rft.pages=4044-4058&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.109.069211&rft_dat=%3Cjstor_pubme%3E40537568%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-c998f236ce179684ed045aaebcc896fdc5e718e3382abbd33bfdab65a41197063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218799928&rft_id=info:pmid/20028841&rft_jstor_id=40537568&rfr_iscdi=true