Loading…
A Bayesian network model for analysis of detection performance in surveillance systems
Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics a...
Saved in:
Published in: | AMIA ... Annual Symposium proceedings 2009-11, Vol.2009, p.276-280 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 280 |
container_issue | |
container_start_page | 276 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2009 |
creator | Izadi, Masoumeh Buckeridge, David Okhmatovskaia, Anna Tu, Samson W O'Connor, Martin J Nyulas, Csongor Musen, Mark A |
description | Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings. |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733835750</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-4a0d0e7f23f0a9933c09d668422ae14db193293c946cf04368e5123f99ac7de73</originalsourceid><addsrcrecordid>eNpVkE9LxDAUxIsg7rr6FSQ3T4Wk-dPmIqyLusKCF_UasumrRtukJulKv71VV9HT8JjhN8w7yOaEc5kzXIpZdhzjC8as5JU4ymYFppxUgs2zxyW61CNEqx1ykN59eEWdr6FFjQ9IO92O0UbkG1RDApOsd6iHMJmddgaQdSgOYQe2bb_uOMYEXTzJDhvdRjjd6yJ7uL66X63zzd3N7Wq5yXtS4ZQzjWsMZVPQBmspKTVY1kJUrCg0EFZviaSFpEYyYRrMqKiAkykspTZlDSVdZBff3H7YdlAbcCnoVvXBdjqMymur_jvOPqsnv1NFRTjDZAKc7wHBvw0Qk-psNPC5BvwQVUlpRXnJ8ZQ8-1v12_HzS_oBhBhxQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733835750</pqid></control><display><type>article</type><title>A Bayesian network model for analysis of detection performance in surveillance systems</title><source>PubMed Central</source><creator>Izadi, Masoumeh ; Buckeridge, David ; Okhmatovskaia, Anna ; Tu, Samson W ; O'Connor, Martin J ; Nyulas, Csongor ; Musen, Mark A</creator><creatorcontrib>Izadi, Masoumeh ; Buckeridge, David ; Okhmatovskaia, Anna ; Tu, Samson W ; O'Connor, Martin J ; Nyulas, Csongor ; Musen, Mark A</creatorcontrib><description>Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 20351864</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Algorithms ; Bayes Theorem ; Communicable Diseases - diagnosis ; Communicable Diseases - epidemiology ; Disease Outbreaks ; Humans ; Population Surveillance - methods ; Public Health Informatics</subject><ispartof>AMIA ... Annual Symposium proceedings, 2009-11, Vol.2009, p.276-280</ispartof><rights>2009 AMIA - All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815401/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815401/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20351864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Izadi, Masoumeh</creatorcontrib><creatorcontrib>Buckeridge, David</creatorcontrib><creatorcontrib>Okhmatovskaia, Anna</creatorcontrib><creatorcontrib>Tu, Samson W</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Nyulas, Csongor</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><title>A Bayesian network model for analysis of detection performance in surveillance systems</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Communicable Diseases - diagnosis</subject><subject>Communicable Diseases - epidemiology</subject><subject>Disease Outbreaks</subject><subject>Humans</subject><subject>Population Surveillance - methods</subject><subject>Public Health Informatics</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpVkE9LxDAUxIsg7rr6FSQ3T4Wk-dPmIqyLusKCF_UasumrRtukJulKv71VV9HT8JjhN8w7yOaEc5kzXIpZdhzjC8as5JU4ymYFppxUgs2zxyW61CNEqx1ykN59eEWdr6FFjQ9IO92O0UbkG1RDApOsd6iHMJmddgaQdSgOYQe2bb_uOMYEXTzJDhvdRjjd6yJ7uL66X63zzd3N7Wq5yXtS4ZQzjWsMZVPQBmspKTVY1kJUrCg0EFZviaSFpEYyYRrMqKiAkykspTZlDSVdZBff3H7YdlAbcCnoVvXBdjqMymur_jvOPqsnv1NFRTjDZAKc7wHBvw0Qk-psNPC5BvwQVUlpRXnJ8ZQ8-1v12_HzS_oBhBhxQA</recordid><startdate>20091114</startdate><enddate>20091114</enddate><creator>Izadi, Masoumeh</creator><creator>Buckeridge, David</creator><creator>Okhmatovskaia, Anna</creator><creator>Tu, Samson W</creator><creator>O'Connor, Martin J</creator><creator>Nyulas, Csongor</creator><creator>Musen, Mark A</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091114</creationdate><title>A Bayesian network model for analysis of detection performance in surveillance systems</title><author>Izadi, Masoumeh ; Buckeridge, David ; Okhmatovskaia, Anna ; Tu, Samson W ; O'Connor, Martin J ; Nyulas, Csongor ; Musen, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-4a0d0e7f23f0a9933c09d668422ae14db193293c946cf04368e5123f99ac7de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Communicable Diseases - diagnosis</topic><topic>Communicable Diseases - epidemiology</topic><topic>Disease Outbreaks</topic><topic>Humans</topic><topic>Population Surveillance - methods</topic><topic>Public Health Informatics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izadi, Masoumeh</creatorcontrib><creatorcontrib>Buckeridge, David</creatorcontrib><creatorcontrib>Okhmatovskaia, Anna</creatorcontrib><creatorcontrib>Tu, Samson W</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Nyulas, Csongor</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izadi, Masoumeh</au><au>Buckeridge, David</au><au>Okhmatovskaia, Anna</au><au>Tu, Samson W</au><au>O'Connor, Martin J</au><au>Nyulas, Csongor</au><au>Musen, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian network model for analysis of detection performance in surveillance systems</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2009-11-14</date><risdate>2009</risdate><volume>2009</volume><spage>276</spage><epage>280</epage><pages>276-280</pages><eissn>1559-4076</eissn><abstract>Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>20351864</pmid><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2009-11, Vol.2009, p.276-280 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815401 |
source | PubMed Central |
subjects | Algorithms Bayes Theorem Communicable Diseases - diagnosis Communicable Diseases - epidemiology Disease Outbreaks Humans Population Surveillance - methods Public Health Informatics |
title | A Bayesian network model for analysis of detection performance in surveillance systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20network%20model%20for%20analysis%20of%20detection%20performance%20in%20surveillance%20systems&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Izadi,%20Masoumeh&rft.date=2009-11-14&rft.volume=2009&rft.spage=276&rft.epage=280&rft.pages=276-280&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E733835750%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p180t-4a0d0e7f23f0a9933c09d668422ae14db193293c946cf04368e5123f99ac7de73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733835750&rft_id=info:pmid/20351864&rfr_iscdi=true |