Loading…

A Bayesian network model for analysis of detection performance in surveillance systems

Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics a...

Full description

Saved in:
Bibliographic Details
Published in:AMIA ... Annual Symposium proceedings 2009-11, Vol.2009, p.276-280
Main Authors: Izadi, Masoumeh, Buckeridge, David, Okhmatovskaia, Anna, Tu, Samson W, O'Connor, Martin J, Nyulas, Csongor, Musen, Mark A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 280
container_issue
container_start_page 276
container_title AMIA ... Annual Symposium proceedings
container_volume 2009
creator Izadi, Masoumeh
Buckeridge, David
Okhmatovskaia, Anna
Tu, Samson W
O'Connor, Martin J
Nyulas, Csongor
Musen, Mark A
description Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733835750</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-4a0d0e7f23f0a9933c09d668422ae14db193293c946cf04368e5123f99ac7de73</originalsourceid><addsrcrecordid>eNpVkE9LxDAUxIsg7rr6FSQ3T4Wk-dPmIqyLusKCF_UasumrRtukJulKv71VV9HT8JjhN8w7yOaEc5kzXIpZdhzjC8as5JU4ymYFppxUgs2zxyW61CNEqx1ykN59eEWdr6FFjQ9IO92O0UbkG1RDApOsd6iHMJmddgaQdSgOYQe2bb_uOMYEXTzJDhvdRjjd6yJ7uL66X63zzd3N7Wq5yXtS4ZQzjWsMZVPQBmspKTVY1kJUrCg0EFZviaSFpEYyYRrMqKiAkykspTZlDSVdZBff3H7YdlAbcCnoVvXBdjqMymur_jvOPqsnv1NFRTjDZAKc7wHBvw0Qk-psNPC5BvwQVUlpRXnJ8ZQ8-1v12_HzS_oBhBhxQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733835750</pqid></control><display><type>article</type><title>A Bayesian network model for analysis of detection performance in surveillance systems</title><source>PubMed Central</source><creator>Izadi, Masoumeh ; Buckeridge, David ; Okhmatovskaia, Anna ; Tu, Samson W ; O'Connor, Martin J ; Nyulas, Csongor ; Musen, Mark A</creator><creatorcontrib>Izadi, Masoumeh ; Buckeridge, David ; Okhmatovskaia, Anna ; Tu, Samson W ; O'Connor, Martin J ; Nyulas, Csongor ; Musen, Mark A</creatorcontrib><description>Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 20351864</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Algorithms ; Bayes Theorem ; Communicable Diseases - diagnosis ; Communicable Diseases - epidemiology ; Disease Outbreaks ; Humans ; Population Surveillance - methods ; Public Health Informatics</subject><ispartof>AMIA ... Annual Symposium proceedings, 2009-11, Vol.2009, p.276-280</ispartof><rights>2009 AMIA - All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815401/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815401/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20351864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Izadi, Masoumeh</creatorcontrib><creatorcontrib>Buckeridge, David</creatorcontrib><creatorcontrib>Okhmatovskaia, Anna</creatorcontrib><creatorcontrib>Tu, Samson W</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Nyulas, Csongor</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><title>A Bayesian network model for analysis of detection performance in surveillance systems</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Communicable Diseases - diagnosis</subject><subject>Communicable Diseases - epidemiology</subject><subject>Disease Outbreaks</subject><subject>Humans</subject><subject>Population Surveillance - methods</subject><subject>Public Health Informatics</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpVkE9LxDAUxIsg7rr6FSQ3T4Wk-dPmIqyLusKCF_UasumrRtukJulKv71VV9HT8JjhN8w7yOaEc5kzXIpZdhzjC8as5JU4ymYFppxUgs2zxyW61CNEqx1ykN59eEWdr6FFjQ9IO92O0UbkG1RDApOsd6iHMJmddgaQdSgOYQe2bb_uOMYEXTzJDhvdRjjd6yJ7uL66X63zzd3N7Wq5yXtS4ZQzjWsMZVPQBmspKTVY1kJUrCg0EFZviaSFpEYyYRrMqKiAkykspTZlDSVdZBff3H7YdlAbcCnoVvXBdjqMymur_jvOPqsnv1NFRTjDZAKc7wHBvw0Qk-psNPC5BvwQVUlpRXnJ8ZQ8-1v12_HzS_oBhBhxQA</recordid><startdate>20091114</startdate><enddate>20091114</enddate><creator>Izadi, Masoumeh</creator><creator>Buckeridge, David</creator><creator>Okhmatovskaia, Anna</creator><creator>Tu, Samson W</creator><creator>O'Connor, Martin J</creator><creator>Nyulas, Csongor</creator><creator>Musen, Mark A</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091114</creationdate><title>A Bayesian network model for analysis of detection performance in surveillance systems</title><author>Izadi, Masoumeh ; Buckeridge, David ; Okhmatovskaia, Anna ; Tu, Samson W ; O'Connor, Martin J ; Nyulas, Csongor ; Musen, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-4a0d0e7f23f0a9933c09d668422ae14db193293c946cf04368e5123f99ac7de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Communicable Diseases - diagnosis</topic><topic>Communicable Diseases - epidemiology</topic><topic>Disease Outbreaks</topic><topic>Humans</topic><topic>Population Surveillance - methods</topic><topic>Public Health Informatics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izadi, Masoumeh</creatorcontrib><creatorcontrib>Buckeridge, David</creatorcontrib><creatorcontrib>Okhmatovskaia, Anna</creatorcontrib><creatorcontrib>Tu, Samson W</creatorcontrib><creatorcontrib>O'Connor, Martin J</creatorcontrib><creatorcontrib>Nyulas, Csongor</creatorcontrib><creatorcontrib>Musen, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izadi, Masoumeh</au><au>Buckeridge, David</au><au>Okhmatovskaia, Anna</au><au>Tu, Samson W</au><au>O'Connor, Martin J</au><au>Nyulas, Csongor</au><au>Musen, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian network model for analysis of detection performance in surveillance systems</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2009-11-14</date><risdate>2009</risdate><volume>2009</volume><spage>276</spage><epage>280</epage><pages>276-280</pages><eissn>1559-4076</eissn><abstract>Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>20351864</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2009-11, Vol.2009, p.276-280
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815401
source PubMed Central
subjects Algorithms
Bayes Theorem
Communicable Diseases - diagnosis
Communicable Diseases - epidemiology
Disease Outbreaks
Humans
Population Surveillance - methods
Public Health Informatics
title A Bayesian network model for analysis of detection performance in surveillance systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20network%20model%20for%20analysis%20of%20detection%20performance%20in%20surveillance%20systems&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Izadi,%20Masoumeh&rft.date=2009-11-14&rft.volume=2009&rft.spage=276&rft.epage=280&rft.pages=276-280&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E733835750%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p180t-4a0d0e7f23f0a9933c09d668422ae14db193293c946cf04368e5123f99ac7de73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733835750&rft_id=info:pmid/20351864&rfr_iscdi=true