Loading…

Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records

Colorectal cancer (CRC) screening rates are low despite proven benefits. We developed natural language processing (NLP) algorithms to identify temporal expressions and status indicators, such as "patient refused" or "test scheduled." The authors incorporated the algorithms into t...

Full description

Saved in:
Bibliographic Details
Published in:AMIA ... Annual Symposium proceedings 2009-11, Vol.2009, p.141-141
Main Authors: Denny, Joshua C, Peterson, Josh F, Choma, Neesha N, Xu, Hua, Miller, Randolph A, Bastarache, Lisa, Peterson, Neeraja B
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 141
container_issue
container_start_page 141
container_title AMIA ... Annual Symposium proceedings
container_volume 2009
creator Denny, Joshua C
Peterson, Josh F
Choma, Neesha N
Xu, Hua
Miller, Randolph A
Bastarache, Lisa
Peterson, Neeraja B
description Colorectal cancer (CRC) screening rates are low despite proven benefits. We developed natural language processing (NLP) algorithms to identify temporal expressions and status indicators, such as "patient refused" or "test scheduled." The authors incorporated the algorithms into the KnowledgeMap Concept Identifier system in order to detect references to completed colonoscopies within electronic text. The modified NLP system was evaluated using 200 randomly selected electronic medical records (EMRs) from a primary care population aged >/=50 years. The system detected completed colonoscopies with recall and precision of 0.93 and 0.92. The system was superior to a query of colonoscopy billing codes to determine screening status.
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733835732</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-67b8431b116d9ac3172b108843ed62ef954e34ce3e2137035ba6bc48c8979ded3</originalsourceid><addsrcrecordid>eNpVUMtKxDAUDYI44-gvSHauCk3TNOlGkPExwoAbXZc0ua2RNqlJOjA_4HebwVF0deHe87jnnKAlYazOypxXC3Qewnuel5yJ6gwtipwyIihfos872MHgphFsxK7DElsZZy8HPEjbz7IHPHmnIARjexz2IcKIo8NGJ4Lp9jia8XCRVuMQEzUcVJQbnHVBuSkBIMQDwlgMA6jonTUKj6CNSi4elPM6XKDTTg4BLo9zhV4f7l_Wm2z7_Pi0vt1mExF5zCreipKSlpBK11JRwouW5CLtQFcFdDUrgZYKKBSE8hSylVWrSqFEzWsNmq7QzbfuNLfpBZVCpKzN5M0o_b5x0jT_L9a8Nb3bNYUgrOQiCVwfBbz7mFO0ZjRBwZDaAjeHhlMqKOO0SMirv1a_Hj_d0y-JXYP1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733835732</pqid></control><display><type>article</type><title>Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records</title><source>PubMed Central</source><creator>Denny, Joshua C ; Peterson, Josh F ; Choma, Neesha N ; Xu, Hua ; Miller, Randolph A ; Bastarache, Lisa ; Peterson, Neeraja B</creator><creatorcontrib>Denny, Joshua C ; Peterson, Josh F ; Choma, Neesha N ; Xu, Hua ; Miller, Randolph A ; Bastarache, Lisa ; Peterson, Neeraja B</creatorcontrib><description>Colorectal cancer (CRC) screening rates are low despite proven benefits. We developed natural language processing (NLP) algorithms to identify temporal expressions and status indicators, such as "patient refused" or "test scheduled." The authors incorporated the algorithms into the KnowledgeMap Concept Identifier system in order to detect references to completed colonoscopies within electronic text. The modified NLP system was evaluated using 200 randomly selected electronic medical records (EMRs) from a primary care population aged &gt;/=50 years. The system detected completed colonoscopies with recall and precision of 0.93 and 0.92. The system was superior to a query of colonoscopy billing codes to determine screening status.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 20351837</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Algorithms ; Colonoscopy ; Colorectal Neoplasms - diagnosis ; Early Detection of Cancer ; Electronic Health Records ; Humans ; Natural Language Processing ; Time Factors</subject><ispartof>AMIA ... Annual Symposium proceedings, 2009-11, Vol.2009, p.141-141</ispartof><rights>2009 AMIA - All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815478/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815478/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20351837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Denny, Joshua C</creatorcontrib><creatorcontrib>Peterson, Josh F</creatorcontrib><creatorcontrib>Choma, Neesha N</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Miller, Randolph A</creatorcontrib><creatorcontrib>Bastarache, Lisa</creatorcontrib><creatorcontrib>Peterson, Neeraja B</creatorcontrib><title>Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>Colorectal cancer (CRC) screening rates are low despite proven benefits. We developed natural language processing (NLP) algorithms to identify temporal expressions and status indicators, such as "patient refused" or "test scheduled." The authors incorporated the algorithms into the KnowledgeMap Concept Identifier system in order to detect references to completed colonoscopies within electronic text. The modified NLP system was evaluated using 200 randomly selected electronic medical records (EMRs) from a primary care population aged &gt;/=50 years. The system detected completed colonoscopies with recall and precision of 0.93 and 0.92. The system was superior to a query of colonoscopy billing codes to determine screening status.</description><subject>Algorithms</subject><subject>Colonoscopy</subject><subject>Colorectal Neoplasms - diagnosis</subject><subject>Early Detection of Cancer</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Time Factors</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpVUMtKxDAUDYI44-gvSHauCk3TNOlGkPExwoAbXZc0ua2RNqlJOjA_4HebwVF0deHe87jnnKAlYazOypxXC3Qewnuel5yJ6gwtipwyIihfos872MHgphFsxK7DElsZZy8HPEjbz7IHPHmnIARjexz2IcKIo8NGJ4Lp9jia8XCRVuMQEzUcVJQbnHVBuSkBIMQDwlgMA6jonTUKj6CNSi4elPM6XKDTTg4BLo9zhV4f7l_Wm2z7_Pi0vt1mExF5zCreipKSlpBK11JRwouW5CLtQFcFdDUrgZYKKBSE8hSylVWrSqFEzWsNmq7QzbfuNLfpBZVCpKzN5M0o_b5x0jT_L9a8Nb3bNYUgrOQiCVwfBbz7mFO0ZjRBwZDaAjeHhlMqKOO0SMirv1a_Hj_d0y-JXYP1</recordid><startdate>20091114</startdate><enddate>20091114</enddate><creator>Denny, Joshua C</creator><creator>Peterson, Josh F</creator><creator>Choma, Neesha N</creator><creator>Xu, Hua</creator><creator>Miller, Randolph A</creator><creator>Bastarache, Lisa</creator><creator>Peterson, Neeraja B</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091114</creationdate><title>Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records</title><author>Denny, Joshua C ; Peterson, Josh F ; Choma, Neesha N ; Xu, Hua ; Miller, Randolph A ; Bastarache, Lisa ; Peterson, Neeraja B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-67b8431b116d9ac3172b108843ed62ef954e34ce3e2137035ba6bc48c8979ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Colonoscopy</topic><topic>Colorectal Neoplasms - diagnosis</topic><topic>Early Detection of Cancer</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denny, Joshua C</creatorcontrib><creatorcontrib>Peterson, Josh F</creatorcontrib><creatorcontrib>Choma, Neesha N</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Miller, Randolph A</creatorcontrib><creatorcontrib>Bastarache, Lisa</creatorcontrib><creatorcontrib>Peterson, Neeraja B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denny, Joshua C</au><au>Peterson, Josh F</au><au>Choma, Neesha N</au><au>Xu, Hua</au><au>Miller, Randolph A</au><au>Bastarache, Lisa</au><au>Peterson, Neeraja B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2009-11-14</date><risdate>2009</risdate><volume>2009</volume><spage>141</spage><epage>141</epage><pages>141-141</pages><eissn>1559-4076</eissn><abstract>Colorectal cancer (CRC) screening rates are low despite proven benefits. We developed natural language processing (NLP) algorithms to identify temporal expressions and status indicators, such as "patient refused" or "test scheduled." The authors incorporated the algorithms into the KnowledgeMap Concept Identifier system in order to detect references to completed colonoscopies within electronic text. The modified NLP system was evaluated using 200 randomly selected electronic medical records (EMRs) from a primary care population aged &gt;/=50 years. The system detected completed colonoscopies with recall and precision of 0.93 and 0.92. The system was superior to a query of colonoscopy billing codes to determine screening status.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>20351837</pmid><tpages>1</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2009-11, Vol.2009, p.141-141
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815478
source PubMed Central
subjects Algorithms
Colonoscopy
Colorectal Neoplasms - diagnosis
Early Detection of Cancer
Electronic Health Records
Humans
Natural Language Processing
Time Factors
title Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20natural%20language%20processing%20system%20to%20identify%20timing%20and%20status%20of%20colonoscopy%20testing%20in%20electronic%20medical%20records&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Denny,%20Joshua%20C&rft.date=2009-11-14&rft.volume=2009&rft.spage=141&rft.epage=141&rft.pages=141-141&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E733835732%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p180t-67b8431b116d9ac3172b108843ed62ef954e34ce3e2137035ba6bc48c8979ded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733835732&rft_id=info:pmid/20351837&rfr_iscdi=true