Loading…
Targeted Integration of T-DNA into the Tobacco Genome at Double-Stranded Breaks: New Insights on the Mechanism of T-DNA Integration
Agrobacterium tumefaciens T-DNA normally integrates into random sites in the plant genome. We have investigated targeting of T-DNA by nonhomologous end joining process to a specific double-stranded break created in the plant genome by I-CeuI endonuclease. Sequencing of genomic DNA/T-DNA junctions in...
Saved in:
Published in: | Plant physiology (Bethesda) 2003-11, Vol.133 (3), p.956-965 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Agrobacterium tumefaciens T-DNA normally integrates into random sites in the plant genome. We have investigated targeting of T-DNA by nonhomologous end joining process to a specific double-stranded break created in the plant genome by I-CeuI endonuclease. Sequencing of genomic DNA/T-DNA junctions in targeted events revealed that genomic DNA at the cleavage sites was usually intact or nearly so, whereas donor T-DNA ends were often resected, sometimes extensively, as is found in random T-DNA inserts. Short filler DNAs were also present in several junctions. When an I-CeuI site was placed in the donor T-DNA, it was often cleaved by I-CeuI endonuclease, leading to precisely truncated targeted T-DNA inserts. Their structure requires that T-DNA cutting occurred before or during integration, indicating that T-DNA is at least partially double stranded before integration is complete. This method of targeting full-length T-DNA with considerable fidelity to a chosen break point in the plant genome may have experimental and practical applications. Our findings suggest that insertion at break points by nonhomologous end joining is one normal mode of entry for T-DNA into the plant genome. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.103.026104 |