Loading…
Silicon electronics on silk as a path to bioresorbable, implantable devices
Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This pap...
Saved in:
Published in: | Applied physics letters 2009-09, Vol.95 (13), p.133701-133701-3 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123 |
container_end_page | 133701-3 |
container_issue | 13 |
container_start_page | 133701 |
container_title | Applied physics letters |
container_volume | 95 |
creator | Kim, Dae-Hyeong Kim, Yun-Soung Amsden, Jason Panilaitis, Bruce Kaplan, David L. Omenetto, Fiorenzo G. Zakin, Mitchell R. Rogers, John A. |
description | Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications. |
doi_str_mv | 10.1063/1.3238552 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2816979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859591387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</originalsourceid><addsrcrecordid>eNp1kc1rVDEUxYModlpd-A9IcGXBV3OT5iVZKEjxCwsu1HXIx31O9M3LmGQK_vdmmLHUhatwyI9zz72HkCfALoCN4iVcCC60lPweWQFTahAA-j5ZMcbEMBoJJ-S01h9dSi7EQ3LCGVzK0ZgV-fQlzSnkheKMoZW8pFBplzXNP6mr1NGta2vaMvUpF6y5eOdnfEHTZju7pe0FjXiTAtZH5MHk5oqPj-8Z-fbu7derD8P15_cfr95cD0Fy3gapPExBxTgFp6LBiWkdDFdxkoZdGi-NRq3kGGHyEMQUfVTKMa_RjcIBF2fk9cF3u_MbjAGXVtxstyVtXPlts0v2358lre33fGO5htEo0w2eHQxybcnWkBqGdT_C0k9gQasR9Nih58cpJf_aYW12k2rAuW-NeVc7J400ILTq6PkBDSXXWnC6zQLM7huyYI8Ndfbp3fC35N9KOvDqAOxzuZby8n-3Y3n2TnniD64koY0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859591387</pqid></control><display><type>article</type><title>Silicon electronics on silk as a path to bioresorbable, implantable devices</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kim, Dae-Hyeong ; Kim, Yun-Soung ; Amsden, Jason ; Panilaitis, Bruce ; Kaplan, David L. ; Omenetto, Fiorenzo G. ; Zakin, Mitchell R. ; Rogers, John A.</creator><creatorcontrib>Kim, Dae-Hyeong ; Kim, Yun-Soung ; Amsden, Jason ; Panilaitis, Bruce ; Kaplan, David L. ; Omenetto, Fiorenzo G. ; Zakin, Mitchell R. ; Rogers, John A. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>EISSN: 0003-6951</identifier><identifier>DOI: 10.1063/1.3238552</identifier><identifier>PMID: 20145699</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biomaterials ; Biophysics and Bio-Inspired Systems ; Chemical elements ; Electrical properties and parameters ; ENGINEERING ; Nanomaterials ; Natural materials ; Polymers ; Proteins ; Solar cells ; Toxicology ; Transistors</subject><ispartof>Applied physics letters, 2009-09, Vol.95 (13), p.133701-133701-3</ispartof><rights>2009 American Institute of Physics</rights><rights>Copyright © 2009 American Institute of Physics 2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</citedby><cites>FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3238552$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20145699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1876186$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Kim, Yun-Soung</creatorcontrib><creatorcontrib>Amsden, Jason</creatorcontrib><creatorcontrib>Panilaitis, Bruce</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><creatorcontrib>Zakin, Mitchell R.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Silicon electronics on silk as a path to bioresorbable, implantable devices</title><title>Applied physics letters</title><addtitle>Appl Phys Lett</addtitle><description>Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.</description><subject>Biomaterials</subject><subject>Biophysics and Bio-Inspired Systems</subject><subject>Chemical elements</subject><subject>Electrical properties and parameters</subject><subject>ENGINEERING</subject><subject>Nanomaterials</subject><subject>Natural materials</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Solar cells</subject><subject>Toxicology</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><issn>0003-6951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kc1rVDEUxYModlpd-A9IcGXBV3OT5iVZKEjxCwsu1HXIx31O9M3LmGQK_vdmmLHUhatwyI9zz72HkCfALoCN4iVcCC60lPweWQFTahAA-j5ZMcbEMBoJJ-S01h9dSi7EQ3LCGVzK0ZgV-fQlzSnkheKMoZW8pFBplzXNP6mr1NGta2vaMvUpF6y5eOdnfEHTZju7pe0FjXiTAtZH5MHk5oqPj-8Z-fbu7derD8P15_cfr95cD0Fy3gapPExBxTgFp6LBiWkdDFdxkoZdGi-NRq3kGGHyEMQUfVTKMa_RjcIBF2fk9cF3u_MbjAGXVtxstyVtXPlts0v2358lre33fGO5htEo0w2eHQxybcnWkBqGdT_C0k9gQasR9Nih58cpJf_aYW12k2rAuW-NeVc7J400ILTq6PkBDSXXWnC6zQLM7huyYI8Ndfbp3fC35N9KOvDqAOxzuZby8n-3Y3n2TnniD64koY0</recordid><startdate>20090928</startdate><enddate>20090928</enddate><creator>Kim, Dae-Hyeong</creator><creator>Kim, Yun-Soung</creator><creator>Amsden, Jason</creator><creator>Panilaitis, Bruce</creator><creator>Kaplan, David L.</creator><creator>Omenetto, Fiorenzo G.</creator><creator>Zakin, Mitchell R.</creator><creator>Rogers, John A.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090928</creationdate><title>Silicon electronics on silk as a path to bioresorbable, implantable devices</title><author>Kim, Dae-Hyeong ; Kim, Yun-Soung ; Amsden, Jason ; Panilaitis, Bruce ; Kaplan, David L. ; Omenetto, Fiorenzo G. ; Zakin, Mitchell R. ; Rogers, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomaterials</topic><topic>Biophysics and Bio-Inspired Systems</topic><topic>Chemical elements</topic><topic>Electrical properties and parameters</topic><topic>ENGINEERING</topic><topic>Nanomaterials</topic><topic>Natural materials</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Solar cells</topic><topic>Toxicology</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Kim, Yun-Soung</creatorcontrib><creatorcontrib>Amsden, Jason</creatorcontrib><creatorcontrib>Panilaitis, Bruce</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><creatorcontrib>Zakin, Mitchell R.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dae-Hyeong</au><au>Kim, Yun-Soung</au><au>Amsden, Jason</au><au>Panilaitis, Bruce</au><au>Kaplan, David L.</au><au>Omenetto, Fiorenzo G.</au><au>Zakin, Mitchell R.</au><au>Rogers, John A.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon electronics on silk as a path to bioresorbable, implantable devices</atitle><jtitle>Applied physics letters</jtitle><addtitle>Appl Phys Lett</addtitle><date>2009-09-28</date><risdate>2009</risdate><volume>95</volume><issue>13</issue><spage>133701</spage><epage>133701-3</epage><pages>133701-133701-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><eissn>0003-6951</eissn><coden>APPLAB</coden><abstract>Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>20145699</pmid><doi>10.1063/1.3238552</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2009-09, Vol.95 (13), p.133701-133701-3 |
issn | 0003-6951 1077-3118 0003-6951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2816979 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Biomaterials Biophysics and Bio-Inspired Systems Chemical elements Electrical properties and parameters ENGINEERING Nanomaterials Natural materials Polymers Proteins Solar cells Toxicology Transistors |
title | Silicon electronics on silk as a path to bioresorbable, implantable devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20electronics%20on%20silk%20as%20a%20path%20to%20bioresorbable,%20implantable%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20Dae-Hyeong&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2009-09-28&rft.volume=95&rft.issue=13&rft.spage=133701&rft.epage=133701-3&rft.pages=133701-133701-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3238552&rft_dat=%3Cproquest_pubme%3E1859591387%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859591387&rft_id=info:pmid/20145699&rfr_iscdi=true |