Loading…

Silicon electronics on silk as a path to bioresorbable, implantable devices

Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This pap...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2009-09, Vol.95 (13), p.133701-133701-3
Main Authors: Kim, Dae-Hyeong, Kim, Yun-Soung, Amsden, Jason, Panilaitis, Bruce, Kaplan, David L., Omenetto, Fiorenzo G., Zakin, Mitchell R., Rogers, John A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123
cites cdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123
container_end_page 133701-3
container_issue 13
container_start_page 133701
container_title Applied physics letters
container_volume 95
creator Kim, Dae-Hyeong
Kim, Yun-Soung
Amsden, Jason
Panilaitis, Bruce
Kaplan, David L.
Omenetto, Fiorenzo G.
Zakin, Mitchell R.
Rogers, John A.
description Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.
doi_str_mv 10.1063/1.3238552
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2816979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859591387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</originalsourceid><addsrcrecordid>eNp1kc1rVDEUxYModlpd-A9IcGXBV3OT5iVZKEjxCwsu1HXIx31O9M3LmGQK_vdmmLHUhatwyI9zz72HkCfALoCN4iVcCC60lPweWQFTahAA-j5ZMcbEMBoJJ-S01h9dSi7EQ3LCGVzK0ZgV-fQlzSnkheKMoZW8pFBplzXNP6mr1NGta2vaMvUpF6y5eOdnfEHTZju7pe0FjXiTAtZH5MHk5oqPj-8Z-fbu7derD8P15_cfr95cD0Fy3gapPExBxTgFp6LBiWkdDFdxkoZdGi-NRq3kGGHyEMQUfVTKMa_RjcIBF2fk9cF3u_MbjAGXVtxstyVtXPlts0v2358lre33fGO5htEo0w2eHQxybcnWkBqGdT_C0k9gQasR9Nih58cpJf_aYW12k2rAuW-NeVc7J400ILTq6PkBDSXXWnC6zQLM7huyYI8Ndfbp3fC35N9KOvDqAOxzuZby8n-3Y3n2TnniD64koY0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859591387</pqid></control><display><type>article</type><title>Silicon electronics on silk as a path to bioresorbable, implantable devices</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kim, Dae-Hyeong ; Kim, Yun-Soung ; Amsden, Jason ; Panilaitis, Bruce ; Kaplan, David L. ; Omenetto, Fiorenzo G. ; Zakin, Mitchell R. ; Rogers, John A.</creator><creatorcontrib>Kim, Dae-Hyeong ; Kim, Yun-Soung ; Amsden, Jason ; Panilaitis, Bruce ; Kaplan, David L. ; Omenetto, Fiorenzo G. ; Zakin, Mitchell R. ; Rogers, John A. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>EISSN: 0003-6951</identifier><identifier>DOI: 10.1063/1.3238552</identifier><identifier>PMID: 20145699</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Biomaterials ; Biophysics and Bio-Inspired Systems ; Chemical elements ; Electrical properties and parameters ; ENGINEERING ; Nanomaterials ; Natural materials ; Polymers ; Proteins ; Solar cells ; Toxicology ; Transistors</subject><ispartof>Applied physics letters, 2009-09, Vol.95 (13), p.133701-133701-3</ispartof><rights>2009 American Institute of Physics</rights><rights>Copyright © 2009 American Institute of Physics 2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</citedby><cites>FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3238552$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20145699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1876186$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Kim, Yun-Soung</creatorcontrib><creatorcontrib>Amsden, Jason</creatorcontrib><creatorcontrib>Panilaitis, Bruce</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><creatorcontrib>Zakin, Mitchell R.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Silicon electronics on silk as a path to bioresorbable, implantable devices</title><title>Applied physics letters</title><addtitle>Appl Phys Lett</addtitle><description>Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.</description><subject>Biomaterials</subject><subject>Biophysics and Bio-Inspired Systems</subject><subject>Chemical elements</subject><subject>Electrical properties and parameters</subject><subject>ENGINEERING</subject><subject>Nanomaterials</subject><subject>Natural materials</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Solar cells</subject><subject>Toxicology</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><issn>0003-6951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kc1rVDEUxYModlpd-A9IcGXBV3OT5iVZKEjxCwsu1HXIx31O9M3LmGQK_vdmmLHUhatwyI9zz72HkCfALoCN4iVcCC60lPweWQFTahAA-j5ZMcbEMBoJJ-S01h9dSi7EQ3LCGVzK0ZgV-fQlzSnkheKMoZW8pFBplzXNP6mr1NGta2vaMvUpF6y5eOdnfEHTZju7pe0FjXiTAtZH5MHk5oqPj-8Z-fbu7derD8P15_cfr95cD0Fy3gapPExBxTgFp6LBiWkdDFdxkoZdGi-NRq3kGGHyEMQUfVTKMa_RjcIBF2fk9cF3u_MbjAGXVtxstyVtXPlts0v2358lre33fGO5htEo0w2eHQxybcnWkBqGdT_C0k9gQasR9Nih58cpJf_aYW12k2rAuW-NeVc7J400ILTq6PkBDSXXWnC6zQLM7huyYI8Ndfbp3fC35N9KOvDqAOxzuZby8n-3Y3n2TnniD64koY0</recordid><startdate>20090928</startdate><enddate>20090928</enddate><creator>Kim, Dae-Hyeong</creator><creator>Kim, Yun-Soung</creator><creator>Amsden, Jason</creator><creator>Panilaitis, Bruce</creator><creator>Kaplan, David L.</creator><creator>Omenetto, Fiorenzo G.</creator><creator>Zakin, Mitchell R.</creator><creator>Rogers, John A.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090928</creationdate><title>Silicon electronics on silk as a path to bioresorbable, implantable devices</title><author>Kim, Dae-Hyeong ; Kim, Yun-Soung ; Amsden, Jason ; Panilaitis, Bruce ; Kaplan, David L. ; Omenetto, Fiorenzo G. ; Zakin, Mitchell R. ; Rogers, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomaterials</topic><topic>Biophysics and Bio-Inspired Systems</topic><topic>Chemical elements</topic><topic>Electrical properties and parameters</topic><topic>ENGINEERING</topic><topic>Nanomaterials</topic><topic>Natural materials</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Solar cells</topic><topic>Toxicology</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dae-Hyeong</creatorcontrib><creatorcontrib>Kim, Yun-Soung</creatorcontrib><creatorcontrib>Amsden, Jason</creatorcontrib><creatorcontrib>Panilaitis, Bruce</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><creatorcontrib>Zakin, Mitchell R.</creatorcontrib><creatorcontrib>Rogers, John A.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dae-Hyeong</au><au>Kim, Yun-Soung</au><au>Amsden, Jason</au><au>Panilaitis, Bruce</au><au>Kaplan, David L.</au><au>Omenetto, Fiorenzo G.</au><au>Zakin, Mitchell R.</au><au>Rogers, John A.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon electronics on silk as a path to bioresorbable, implantable devices</atitle><jtitle>Applied physics letters</jtitle><addtitle>Appl Phys Lett</addtitle><date>2009-09-28</date><risdate>2009</risdate><volume>95</volume><issue>13</issue><spage>133701</spage><epage>133701-3</epage><pages>133701-133701-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><eissn>0003-6951</eissn><coden>APPLAB</coden><abstract>Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>20145699</pmid><doi>10.1063/1.3238552</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2009-09, Vol.95 (13), p.133701-133701-3
issn 0003-6951
1077-3118
0003-6951
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2816979
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Biomaterials
Biophysics and Bio-Inspired Systems
Chemical elements
Electrical properties and parameters
ENGINEERING
Nanomaterials
Natural materials
Polymers
Proteins
Solar cells
Toxicology
Transistors
title Silicon electronics on silk as a path to bioresorbable, implantable devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20electronics%20on%20silk%20as%20a%20path%20to%20bioresorbable,%20implantable%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Kim,%20Dae-Hyeong&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2009-09-28&rft.volume=95&rft.issue=13&rft.spage=133701&rft.epage=133701-3&rft.pages=133701-133701-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3238552&rft_dat=%3Cproquest_pubme%3E1859591387%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-57b1fc7ddfca7d9ef088c927df59049b598e8756d1fb1c3fdbd77a0b8ea63a123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859591387&rft_id=info:pmid/20145699&rfr_iscdi=true