Loading…
Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model
Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2009-04, Vol.62 (1), p.31-41 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 31 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 62 |
creator | Wu, Xundong E. Mel, Bartlett W. |
description | Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules. |
doi_str_mv | 10.1016/j.neuron.2009.02.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627309001676</els_id><sourcerecordid>67140581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</originalsourceid><addsrcrecordid>eNp9UV1rHCEUldLSbNP-g1IGCnmbrTrq6EuhLOkHbAgk6UtfRJ07icusTnUmsP8-Lrt0mz4ULlzR47nn3IPQe4KXBBPxabMMMKcYlhRjtcS0FHmBFgSrtmZEqZdogaUStaBtc4be5LzBmDCuyGt0RlTTCiz4Av1amdE4P-3qy_BggvPhvrrdBTNO3lVrMCnsb27mAXLlQ2WqK-i8Gao72I4xlcM6Wqiuw-ADnPBXsYPhLXrVmyHDu2M_Rz-_Xt6tvtfr628_Vl_WteOcTzW1THSmZ5JLZThRnFDRNWB702PcAWdCMmVZ21LorHCNo7KTjbW2day1tG_O0ecD7zjbLXQOwlSE6TH5rUk7HY3Xz1-Cf9D38VFTSWkraSG4OBKk-HuGPOmtzw6GwQSIc9aiJQxzSQrw4z_ATZxTKOY04bgpEiVnBcUOKJdizgn6P1II1vvo9EYfotP76DSmpfbkH_62cfp0zOrkE8oyHz0knZ2H4EogCdyku-j_P-EJjG6tNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503772854</pqid></control><display><type>article</type><title>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Wu, Xundong E. ; Mel, Bartlett W.</creator><creatorcontrib>Wu, Xundong E. ; Mel, Bartlett W.</creatorcontrib><description>Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2009.02.021</identifier><identifier>PMID: 19376065</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Computer Simulation ; Distance learning ; Humans ; Learning - physiology ; Long-Term Potentiation - physiology ; Models, Neurological ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neuronal Plasticity ; Neurons ; Online Systems ; Proteins ; Synapses - physiology ; SYSNEURO ; Temporal Lobe - cytology ; Temporal Lobe - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2009-04, Vol.62 (1), p.31-41</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 16, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</citedby><cites>FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19376065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xundong E.</creatorcontrib><creatorcontrib>Mel, Bartlett W.</creatorcontrib><title>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.</description><subject>Animals</subject><subject>Computer Simulation</subject><subject>Distance learning</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Long-Term Potentiation - physiology</subject><subject>Models, Neurological</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Online Systems</subject><subject>Proteins</subject><subject>Synapses - physiology</subject><subject>SYSNEURO</subject><subject>Temporal Lobe - cytology</subject><subject>Temporal Lobe - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UV1rHCEUldLSbNP-g1IGCnmbrTrq6EuhLOkHbAgk6UtfRJ07icusTnUmsP8-Lrt0mz4ULlzR47nn3IPQe4KXBBPxabMMMKcYlhRjtcS0FHmBFgSrtmZEqZdogaUStaBtc4be5LzBmDCuyGt0RlTTCiz4Av1amdE4P-3qy_BggvPhvrrdBTNO3lVrMCnsb27mAXLlQ2WqK-i8Gao72I4xlcM6Wqiuw-ADnPBXsYPhLXrVmyHDu2M_Rz-_Xt6tvtfr628_Vl_WteOcTzW1THSmZ5JLZThRnFDRNWB702PcAWdCMmVZ21LorHCNo7KTjbW2day1tG_O0ecD7zjbLXQOwlSE6TH5rUk7HY3Xz1-Cf9D38VFTSWkraSG4OBKk-HuGPOmtzw6GwQSIc9aiJQxzSQrw4z_ATZxTKOY04bgpEiVnBcUOKJdizgn6P1II1vvo9EYfotP76DSmpfbkH_62cfp0zOrkE8oyHz0knZ2H4EogCdyku-j_P-EJjG6tNw</recordid><startdate>20090416</startdate><enddate>20090416</enddate><creator>Wu, Xundong E.</creator><creator>Mel, Bartlett W.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090416</creationdate><title>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</title><author>Wu, Xundong E. ; Mel, Bartlett W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Computer Simulation</topic><topic>Distance learning</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Long-Term Potentiation - physiology</topic><topic>Models, Neurological</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Online Systems</topic><topic>Proteins</topic><topic>Synapses - physiology</topic><topic>SYSNEURO</topic><topic>Temporal Lobe - cytology</topic><topic>Temporal Lobe - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xundong E.</creatorcontrib><creatorcontrib>Mel, Bartlett W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xundong E.</au><au>Mel, Bartlett W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2009-04-16</date><risdate>2009</risdate><volume>62</volume><issue>1</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19376065</pmid><doi>10.1016/j.neuron.2009.02.021</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2009-04, Vol.62 (1), p.31-41 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822782 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals Computer Simulation Distance learning Humans Learning - physiology Long-Term Potentiation - physiology Models, Neurological Neural Networks (Computer) Neural Pathways - physiology Neuronal Plasticity Neurons Online Systems Proteins Synapses - physiology SYSNEURO Temporal Lobe - cytology Temporal Lobe - physiology |
title | Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity-Enhancing%20Synaptic%20Learning%20Rules%20in%20a%20Medial%20Temporal%20Lobe%20Online%20Learning%20Model&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Wu,%20Xundong%20E.&rft.date=2009-04-16&rft.volume=62&rft.issue=1&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2009.02.021&rft_dat=%3Cproquest_pubme%3E67140581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503772854&rft_id=info:pmid/19376065&rfr_iscdi=true |