Loading…

Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model

Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2009-04, Vol.62 (1), p.31-41
Main Authors: Wu, Xundong E., Mel, Bartlett W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3
cites cdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3
container_end_page 41
container_issue 1
container_start_page 31
container_title Neuron (Cambridge, Mass.)
container_volume 62
creator Wu, Xundong E.
Mel, Bartlett W.
description Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.
doi_str_mv 10.1016/j.neuron.2009.02.021
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627309001676</els_id><sourcerecordid>67140581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</originalsourceid><addsrcrecordid>eNp9UV1rHCEUldLSbNP-g1IGCnmbrTrq6EuhLOkHbAgk6UtfRJ07icusTnUmsP8-Lrt0mz4ULlzR47nn3IPQe4KXBBPxabMMMKcYlhRjtcS0FHmBFgSrtmZEqZdogaUStaBtc4be5LzBmDCuyGt0RlTTCiz4Av1amdE4P-3qy_BggvPhvrrdBTNO3lVrMCnsb27mAXLlQ2WqK-i8Gao72I4xlcM6Wqiuw-ADnPBXsYPhLXrVmyHDu2M_Rz-_Xt6tvtfr628_Vl_WteOcTzW1THSmZ5JLZThRnFDRNWB702PcAWdCMmVZ21LorHCNo7KTjbW2day1tG_O0ecD7zjbLXQOwlSE6TH5rUk7HY3Xz1-Cf9D38VFTSWkraSG4OBKk-HuGPOmtzw6GwQSIc9aiJQxzSQrw4z_ATZxTKOY04bgpEiVnBcUOKJdizgn6P1II1vvo9EYfotP76DSmpfbkH_62cfp0zOrkE8oyHz0knZ2H4EogCdyku-j_P-EJjG6tNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503772854</pqid></control><display><type>article</type><title>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Wu, Xundong E. ; Mel, Bartlett W.</creator><creatorcontrib>Wu, Xundong E. ; Mel, Bartlett W.</creatorcontrib><description>Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2009.02.021</identifier><identifier>PMID: 19376065</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Computer Simulation ; Distance learning ; Humans ; Learning - physiology ; Long-Term Potentiation - physiology ; Models, Neurological ; Neural Networks (Computer) ; Neural Pathways - physiology ; Neuronal Plasticity ; Neurons ; Online Systems ; Proteins ; Synapses - physiology ; SYSNEURO ; Temporal Lobe - cytology ; Temporal Lobe - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2009-04, Vol.62 (1), p.31-41</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 16, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</citedby><cites>FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19376065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xundong E.</creatorcontrib><creatorcontrib>Mel, Bartlett W.</creatorcontrib><title>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.</description><subject>Animals</subject><subject>Computer Simulation</subject><subject>Distance learning</subject><subject>Humans</subject><subject>Learning - physiology</subject><subject>Long-Term Potentiation - physiology</subject><subject>Models, Neurological</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - physiology</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Online Systems</subject><subject>Proteins</subject><subject>Synapses - physiology</subject><subject>SYSNEURO</subject><subject>Temporal Lobe - cytology</subject><subject>Temporal Lobe - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UV1rHCEUldLSbNP-g1IGCnmbrTrq6EuhLOkHbAgk6UtfRJ07icusTnUmsP8-Lrt0mz4ULlzR47nn3IPQe4KXBBPxabMMMKcYlhRjtcS0FHmBFgSrtmZEqZdogaUStaBtc4be5LzBmDCuyGt0RlTTCiz4Av1amdE4P-3qy_BggvPhvrrdBTNO3lVrMCnsb27mAXLlQ2WqK-i8Gao72I4xlcM6Wqiuw-ADnPBXsYPhLXrVmyHDu2M_Rz-_Xt6tvtfr628_Vl_WteOcTzW1THSmZ5JLZThRnFDRNWB702PcAWdCMmVZ21LorHCNo7KTjbW2day1tG_O0ecD7zjbLXQOwlSE6TH5rUk7HY3Xz1-Cf9D38VFTSWkraSG4OBKk-HuGPOmtzw6GwQSIc9aiJQxzSQrw4z_ATZxTKOY04bgpEiVnBcUOKJdizgn6P1II1vvo9EYfotP76DSmpfbkH_62cfp0zOrkE8oyHz0knZ2H4EogCdyku-j_P-EJjG6tNw</recordid><startdate>20090416</startdate><enddate>20090416</enddate><creator>Wu, Xundong E.</creator><creator>Mel, Bartlett W.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090416</creationdate><title>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</title><author>Wu, Xundong E. ; Mel, Bartlett W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Computer Simulation</topic><topic>Distance learning</topic><topic>Humans</topic><topic>Learning - physiology</topic><topic>Long-Term Potentiation - physiology</topic><topic>Models, Neurological</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - physiology</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Online Systems</topic><topic>Proteins</topic><topic>Synapses - physiology</topic><topic>SYSNEURO</topic><topic>Temporal Lobe - cytology</topic><topic>Temporal Lobe - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xundong E.</creatorcontrib><creatorcontrib>Mel, Bartlett W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xundong E.</au><au>Mel, Bartlett W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2009-04-16</date><risdate>2009</risdate><volume>62</volume><issue>1</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize “online” learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19376065</pmid><doi>10.1016/j.neuron.2009.02.021</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2009-04, Vol.62 (1), p.31-41
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2822782
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Computer Simulation
Distance learning
Humans
Learning - physiology
Long-Term Potentiation - physiology
Models, Neurological
Neural Networks (Computer)
Neural Pathways - physiology
Neuronal Plasticity
Neurons
Online Systems
Proteins
Synapses - physiology
SYSNEURO
Temporal Lobe - cytology
Temporal Lobe - physiology
title Capacity-Enhancing Synaptic Learning Rules in a Medial Temporal Lobe Online Learning Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity-Enhancing%20Synaptic%20Learning%20Rules%20in%20a%20Medial%20Temporal%20Lobe%20Online%20Learning%20Model&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Wu,%20Xundong%20E.&rft.date=2009-04-16&rft.volume=62&rft.issue=1&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2009.02.021&rft_dat=%3Cproquest_pubme%3E67140581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-2b46daf48589a5195126d3ebfaf00de546849b4772edb6c3c28d83bbb7c47b2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503772854&rft_id=info:pmid/19376065&rfr_iscdi=true