Loading…

Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM

Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO₂ by carbonic anhydrase (CA) prior to fixation. Parad...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (6), p.2455-2460
Main Authors: Peña, Kerry L, Castel, Stephane E, de Araujo, Charlotte, Espie, George S, Kimber, Matthew S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-c4a8e8a59df0dac21b9510d413f938f826b61d8a09d29ca1392d683bb9f0a05f3
cites cdi_FETCH-LOGICAL-c461t-c4a8e8a59df0dac21b9510d413f938f826b61d8a09d29ca1392d683bb9f0a05f3
container_end_page 2460
container_issue 6
container_start_page 2455
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Peña, Kerry L
Castel, Stephane E
de Araujo, Charlotte
Espie, George S
Kimber, Matthew S
description Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO₂ by carbonic anhydrase (CA) prior to fixation. Paradoxically, many β-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal β-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to γ-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA--the first catalytically active bacterial γ-CA reported. The 2.0 Å structure of CcmM209 reveals a trimeric, left-handed β-helix structure that closely resembles Cam, except that residues 198-207 form a third α-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 Å structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the β-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.
doi_str_mv 10.1073/pnas.0910866107
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536606</jstor_id><sourcerecordid>40536606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-c4a8e8a59df0dac21b9510d413f938f826b61d8a09d29ca1392d683bb9f0a05f3</originalsourceid><addsrcrecordid>eNpVkctu1DAUhi0EokNhzQrIjg1pj-3EsTdIaMRNKmJRukOyTnzpuJrEg51UnefiPXgmPEw7LRvbx_93fl9-Ql5SOKHQ8dPNiPkEFAUpRNl4RBa0VLVoFDwmCwDW1bJhzRF5lvMVAKhWwlNyxIBy3jVqQX6eT2k205xwXfWYQ66ir6aVq-JNsDiFa1ehKVNZxvFOM5j6eLPNcShdf37X_-oxmArH1dYmzO5dtTTDt-fkicd1di9u52Ny8enjj-WX-uz756_LD2e1aQSdyojSSWyV9WDRMNqrloJtKPeKSy-Z6AW1EkFZpgxSrpgVkve98oDQen5M3u99N3M_OGvcOJX36E0KA6atjhj0_8oYVvoyXmsmGZeKFoO3twYp_ppdnvQQsnHrNY4uzll35beo7IAX8nRPmhRzTs4fTqGgd5HoXST6PpLS8frh5Q78XQYPgF3nvV2nhWZN2xbg1R64ylNMB6KBlgsBouhv9rrHqPEyhawvznf2QCUw2VH-F-iMpzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733718703</pqid></control><display><type>article</type><title>Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Peña, Kerry L ; Castel, Stephane E ; de Araujo, Charlotte ; Espie, George S ; Kimber, Matthew S</creator><creatorcontrib>Peña, Kerry L ; Castel, Stephane E ; de Araujo, Charlotte ; Espie, George S ; Kimber, Matthew S</creatorcontrib><description>Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO₂ by carbonic anhydrase (CA) prior to fixation. Paradoxically, many β-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal β-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to γ-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA--the first catalytically active bacterial γ-CA reported. The 2.0 Å structure of CcmM209 reveals a trimeric, left-handed β-helix structure that closely resembles Cam, except that residues 198-207 form a third α-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 Å structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the β-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0910866107</identifier><identifier>PMID: 20133749</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amino Acid Sequence ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites - genetics ; Biological Sciences ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; Carbonic Anhydrase Inhibitors - pharmacology ; Carbonic Anhydrases - chemistry ; Carbonic Anhydrases - genetics ; Carbonic Anhydrases - metabolism ; Catalysis - drug effects ; Crystallography, X-Ray ; Crystals ; Cyanobacteria ; Cyanobacteria - enzymology ; Cyanobacteria - genetics ; Cytoplasmic Granules - enzymology ; Cytosol ; Disulfides ; Disulfides - chemistry ; Disulfides - metabolism ; Enzymes ; Ethoxzolamide - pharmacology ; Ferries ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Oxidation-Reduction ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein subunits ; Proteins ; Sequence Homology, Amino Acid</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (6), p.2455-2460</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-c4a8e8a59df0dac21b9510d413f938f826b61d8a09d29ca1392d683bb9f0a05f3</citedby><cites>FETCH-LOGICAL-c461t-c4a8e8a59df0dac21b9510d413f938f826b61d8a09d29ca1392d683bb9f0a05f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536606$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536606$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peña, Kerry L</creatorcontrib><creatorcontrib>Castel, Stephane E</creatorcontrib><creatorcontrib>de Araujo, Charlotte</creatorcontrib><creatorcontrib>Espie, George S</creatorcontrib><creatorcontrib>Kimber, Matthew S</creatorcontrib><title>Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO₂ by carbonic anhydrase (CA) prior to fixation. Paradoxically, many β-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal β-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to γ-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA--the first catalytically active bacterial γ-CA reported. The 2.0 Å structure of CcmM209 reveals a trimeric, left-handed β-helix structure that closely resembles Cam, except that residues 198-207 form a third α-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 Å structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the β-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.</description><subject>Active sites</subject><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbonic Anhydrase Inhibitors - pharmacology</subject><subject>Carbonic Anhydrases - chemistry</subject><subject>Carbonic Anhydrases - genetics</subject><subject>Carbonic Anhydrases - metabolism</subject><subject>Catalysis - drug effects</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - enzymology</subject><subject>Cyanobacteria - genetics</subject><subject>Cytoplasmic Granules - enzymology</subject><subject>Cytosol</subject><subject>Disulfides</subject><subject>Disulfides - chemistry</subject><subject>Disulfides - metabolism</subject><subject>Enzymes</subject><subject>Ethoxzolamide - pharmacology</subject><subject>Ferries</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein subunits</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkctu1DAUhi0EokNhzQrIjg1pj-3EsTdIaMRNKmJRukOyTnzpuJrEg51UnefiPXgmPEw7LRvbx_93fl9-Ql5SOKHQ8dPNiPkEFAUpRNl4RBa0VLVoFDwmCwDW1bJhzRF5lvMVAKhWwlNyxIBy3jVqQX6eT2k205xwXfWYQ66ir6aVq-JNsDiFa1ehKVNZxvFOM5j6eLPNcShdf37X_-oxmArH1dYmzO5dtTTDt-fkicd1di9u52Ny8enjj-WX-uz756_LD2e1aQSdyojSSWyV9WDRMNqrloJtKPeKSy-Z6AW1EkFZpgxSrpgVkve98oDQen5M3u99N3M_OGvcOJX36E0KA6atjhj0_8oYVvoyXmsmGZeKFoO3twYp_ppdnvQQsnHrNY4uzll35beo7IAX8nRPmhRzTs4fTqGgd5HoXST6PpLS8frh5Q78XQYPgF3nvV2nhWZN2xbg1R64ylNMB6KBlgsBouhv9rrHqPEyhawvznf2QCUw2VH-F-iMpzE</recordid><startdate>20100209</startdate><enddate>20100209</enddate><creator>Peña, Kerry L</creator><creator>Castel, Stephane E</creator><creator>de Araujo, Charlotte</creator><creator>Espie, George S</creator><creator>Kimber, Matthew S</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100209</creationdate><title>Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM</title><author>Peña, Kerry L ; Castel, Stephane E ; de Araujo, Charlotte ; Espie, George S ; Kimber, Matthew S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-c4a8e8a59df0dac21b9510d413f938f826b61d8a09d29ca1392d683bb9f0a05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Active sites</topic><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbonic Anhydrase Inhibitors - pharmacology</topic><topic>Carbonic Anhydrases - chemistry</topic><topic>Carbonic Anhydrases - genetics</topic><topic>Carbonic Anhydrases - metabolism</topic><topic>Catalysis - drug effects</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - enzymology</topic><topic>Cyanobacteria - genetics</topic><topic>Cytoplasmic Granules - enzymology</topic><topic>Cytosol</topic><topic>Disulfides</topic><topic>Disulfides - chemistry</topic><topic>Disulfides - metabolism</topic><topic>Enzymes</topic><topic>Ethoxzolamide - pharmacology</topic><topic>Ferries</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein subunits</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña, Kerry L</creatorcontrib><creatorcontrib>Castel, Stephane E</creatorcontrib><creatorcontrib>de Araujo, Charlotte</creatorcontrib><creatorcontrib>Espie, George S</creatorcontrib><creatorcontrib>Kimber, Matthew S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña, Kerry L</au><au>Castel, Stephane E</au><au>de Araujo, Charlotte</au><au>Espie, George S</au><au>Kimber, Matthew S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-09</date><risdate>2010</risdate><volume>107</volume><issue>6</issue><spage>2455</spage><epage>2460</epage><pages>2455-2460</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cyanobacterial RuBisCO is sequestered in large, icosahedral, protein-bounded microcompartments called carboxysomes. Bicarbonate is pumped into the cytosol, diffuses into the carboxysome through small pores in its shell, and is then converted to CO₂ by carbonic anhydrase (CA) prior to fixation. Paradoxically, many β-cyanobacteria, including Thermosynechococcus elongatus BP-1, lack the conventional carboxysomal β-CA, ccaA. The N-terminal domain of the carboxysomal protein CcmM is homologous to γ-CA from Methanosarcina thermophila (Cam) but recombinant CcmM derived from ccaA-containing cyanobacteria show no CA activity. We demonstrate here that either full length CcmM from T. elongatus, or a construct truncated after 209 residues (CcmM209), is active as a CA--the first catalytically active bacterial γ-CA reported. The 2.0 Å structure of CcmM209 reveals a trimeric, left-handed β-helix structure that closely resembles Cam, except that residues 198-207 form a third α-helix stabilized by an essential Cys194-Cys200 disulfide bond. Deleting residues 194-209 (CcmM193) results in an inactive protein whose 1.1 Å structure shows disordering of the N- and C-termini, and reorganization of the trimeric interface and active site. Under reducing conditions, CcmM209 is similarly partially disordered and inactive as a CA. CcmM protein in fresh E. coli cell extracts is inactive, implying that the cellular reducing machinery can reduce and inactivate CcmM, while diamide, a thiol oxidizing agent, activates the enzyme. Thus, like membrane-bound eukaryotic cellular compartments, the β-carboxysome appears to be able to maintain an oxidizing interior by precluding the entry of thioredoxin and other endogenous reducing agents.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133749</pmid><doi>10.1073/pnas.0910866107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (6), p.2455-2460
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2823891
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Active sites
Amino Acid Sequence
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites - genetics
Biological Sciences
Carbon dioxide
Carbon Dioxide - chemistry
Carbon Dioxide - metabolism
Carbonic Anhydrase Inhibitors - pharmacology
Carbonic Anhydrases - chemistry
Carbonic Anhydrases - genetics
Carbonic Anhydrases - metabolism
Catalysis - drug effects
Crystallography, X-Ray
Crystals
Cyanobacteria
Cyanobacteria - enzymology
Cyanobacteria - genetics
Cytoplasmic Granules - enzymology
Cytosol
Disulfides
Disulfides - chemistry
Disulfides - metabolism
Enzymes
Ethoxzolamide - pharmacology
Ferries
Models, Molecular
Molecular Sequence Data
Mutation
Oxidation-Reduction
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
Protein subunits
Proteins
Sequence Homology, Amino Acid
title Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20the%20oxidative%20activation%20of%20the%20carboxysomal%20%CE%B3-carbonic%20anhydrase,%20CcmM&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pe%C3%B1a,%20Kerry%20L&rft.date=2010-02-09&rft.volume=107&rft.issue=6&rft.spage=2455&rft.epage=2460&rft.pages=2455-2460&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0910866107&rft_dat=%3Cjstor_pubme%3E40536606%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-c4a8e8a59df0dac21b9510d413f938f826b61d8a09d29ca1392d683bb9f0a05f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733718703&rft_id=info:pmid/20133749&rft_jstor_id=40536606&rfr_iscdi=true