Loading…
Review: Semiconductor Piezoresistance for Microsystems
Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and...
Saved in:
Published in: | Proceedings of the IEEE 2009-03, Vol.97 (3), p.513-552 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73 |
container_end_page | 552 |
container_issue | 3 |
container_start_page | 513 |
container_title | Proceedings of the IEEE |
container_volume | 97 |
creator | Barlian, A. Alvin Park, Woo-Tae Mallon, Joseph R. Rastegar, Ali J. Pruitt, Beth L. |
description | Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers. |
doi_str_mv | 10.1109/JPROC.2009.2013612 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2829857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4811093</ieee_id><sourcerecordid>2303957681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</originalsourceid><addsrcrecordid>eNqFkltrFTEUhYNY7LH6BxTkUND6MnXnOokPghy8Ummp-hwymT2aMpeazFTaX9-M53i8PLQvCWR_a-2w9yLkEYVDSsG8-Hhyerw6ZAAmH5Qryu6QBZVSF4xJdZcsAKguDKNml9xP6QwAuFT8HtnNuNGU6gVRp3gR8OfL5Wfsgh_6evLjEJcnAa-GiCmk0fUel01--xR8HNJlGrFLD8hO49qEDzf3Hvn69s2X1fvi6Pjdh9Xro8Irqcaidug0a1TtK8mMdxUTwqPnteKu9CBUI33lSknLBqTWkonKQaldlhimfMn3yKu17_lUdVh77MfoWnseQ-fipR1csP9W-vDdfhsuLNPMaDkbHGwM4vBjwjTaLiSPbet6HKZkDXDFDQh9K6lLCRykopl8diPJheBCwtz8-Y0g1VxKwUrDbkeBMQOK8Rnd_w89G6bY5zVYPQ-Rcj7_ka2heWcpYrOdGQU7p8f-So-d02M36cmiJ39Peyv5HZcMPN0ALnnXNjGHI6Q_XG6thZKZe7zmAiJuy0LPjTm_Bvzc1MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858851331</pqid></control><display><type>article</type><title>Review: Semiconductor Piezoresistance for Microsystems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barlian, A. Alvin ; Park, Woo-Tae ; Mallon, Joseph R. ; Rastegar, Ali J. ; Pruitt, Beth L.</creator><creatorcontrib>Barlian, A. Alvin ; Park, Woo-Tae ; Mallon, Joseph R. ; Rastegar, Ali J. ; Pruitt, Beth L.</creatorcontrib><description>Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2013612</identifier><identifier>PMID: 20198118</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic wave devices, piezoelectric and piezoresistive devices ; Applied sciences ; Design engineering ; Devices ; Electronics ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials selection ; MEMS ; Micro- and nanoelectromechanical devices (mems/nems) ; Microelectromechanical systems ; Microelectronic fabrication (materials and surfaces technology) ; microfabrication ; Micromachining ; Micromechanical devices ; microsensors ; Physics ; Piezoresistance ; Piezoresistive devices ; piezoresistor ; Piezoresistors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Sensor systems ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Silicon devices</subject><ispartof>Proceedings of the IEEE, 2009-03, Vol.97 (3), p.513-552</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</citedby><cites>FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4811093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21338465$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20198118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlian, A. Alvin</creatorcontrib><creatorcontrib>Park, Woo-Tae</creatorcontrib><creatorcontrib>Mallon, Joseph R.</creatorcontrib><creatorcontrib>Rastegar, Ali J.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><title>Review: Semiconductor Piezoresistance for Microsystems</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><description>Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.</description><subject>Acoustic wave devices, piezoelectric and piezoresistive devices</subject><subject>Applied sciences</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials selection</subject><subject>MEMS</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microelectromechanical systems</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>microfabrication</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>microsensors</subject><subject>Physics</subject><subject>Piezoresistance</subject><subject>Piezoresistive devices</subject><subject>piezoresistor</subject><subject>Piezoresistors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Silicon devices</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkltrFTEUhYNY7LH6BxTkUND6MnXnOokPghy8Ummp-hwymT2aMpeazFTaX9-M53i8PLQvCWR_a-2w9yLkEYVDSsG8-Hhyerw6ZAAmH5Qryu6QBZVSF4xJdZcsAKguDKNml9xP6QwAuFT8HtnNuNGU6gVRp3gR8OfL5Wfsgh_6evLjEJcnAa-GiCmk0fUel01--xR8HNJlGrFLD8hO49qEDzf3Hvn69s2X1fvi6Pjdh9Xro8Irqcaidug0a1TtK8mMdxUTwqPnteKu9CBUI33lSknLBqTWkonKQaldlhimfMn3yKu17_lUdVh77MfoWnseQ-fipR1csP9W-vDdfhsuLNPMaDkbHGwM4vBjwjTaLiSPbet6HKZkDXDFDQh9K6lLCRykopl8diPJheBCwtz8-Y0g1VxKwUrDbkeBMQOK8Rnd_w89G6bY5zVYPQ-Rcj7_ka2heWcpYrOdGQU7p8f-So-d02M36cmiJ39Peyv5HZcMPN0ALnnXNjGHI6Q_XG6thZKZe7zmAiJuy0LPjTm_Bvzc1MQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Barlian, A. Alvin</creator><creator>Park, Woo-Tae</creator><creator>Mallon, Joseph R.</creator><creator>Rastegar, Ali J.</creator><creator>Pruitt, Beth L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Review: Semiconductor Piezoresistance for Microsystems</title><author>Barlian, A. Alvin ; Park, Woo-Tae ; Mallon, Joseph R. ; Rastegar, Ali J. ; Pruitt, Beth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic wave devices, piezoelectric and piezoresistive devices</topic><topic>Applied sciences</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials selection</topic><topic>MEMS</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microelectromechanical systems</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>microfabrication</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>microsensors</topic><topic>Physics</topic><topic>Piezoresistance</topic><topic>Piezoresistive devices</topic><topic>piezoresistor</topic><topic>Piezoresistors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Silicon devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlian, A. Alvin</creatorcontrib><creatorcontrib>Park, Woo-Tae</creatorcontrib><creatorcontrib>Mallon, Joseph R.</creatorcontrib><creatorcontrib>Rastegar, Ali J.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlian, A. Alvin</au><au>Park, Woo-Tae</au><au>Mallon, Joseph R.</au><au>Rastegar, Ali J.</au><au>Pruitt, Beth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review: Semiconductor Piezoresistance for Microsystems</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>97</volume><issue>3</issue><spage>513</spage><epage>552</epage><pages>513-552</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>20198118</pmid><doi>10.1109/JPROC.2009.2013612</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2009-03, Vol.97 (3), p.513-552 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2829857 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acoustic wave devices, piezoelectric and piezoresistive devices Applied sciences Design engineering Devices Electronics Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials selection MEMS Micro- and nanoelectromechanical devices (mems/nems) Microelectromechanical systems Microelectronic fabrication (materials and surfaces technology) microfabrication Micromachining Micromechanical devices microsensors Physics Piezoresistance Piezoresistive devices piezoresistor Piezoresistors Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Sensor systems Sensors Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Silicon devices |
title | Review: Semiconductor Piezoresistance for Microsystems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review:%20Semiconductor%20Piezoresistance%20for%20Microsystems&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Barlian,%20A.%20Alvin&rft.date=2009-03-01&rft.volume=97&rft.issue=3&rft.spage=513&rft.epage=552&rft.pages=513-552&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2013612&rft_dat=%3Cproquest_pubme%3E2303957681%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858851331&rft_id=info:pmid/20198118&rft_ieee_id=4811093&rfr_iscdi=true |