Loading…

Review: Semiconductor Piezoresistance for Microsystems

Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2009-03, Vol.97 (3), p.513-552
Main Authors: Barlian, A. Alvin, Park, Woo-Tae, Mallon, Joseph R., Rastegar, Ali J., Pruitt, Beth L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73
cites cdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73
container_end_page 552
container_issue 3
container_start_page 513
container_title Proceedings of the IEEE
container_volume 97
creator Barlian, A. Alvin
Park, Woo-Tae
Mallon, Joseph R.
Rastegar, Ali J.
Pruitt, Beth L.
description Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
doi_str_mv 10.1109/JPROC.2009.2013612
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2829857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4811093</ieee_id><sourcerecordid>2303957681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</originalsourceid><addsrcrecordid>eNqFkltrFTEUhYNY7LH6BxTkUND6MnXnOokPghy8Ummp-hwymT2aMpeazFTaX9-M53i8PLQvCWR_a-2w9yLkEYVDSsG8-Hhyerw6ZAAmH5Qryu6QBZVSF4xJdZcsAKguDKNml9xP6QwAuFT8HtnNuNGU6gVRp3gR8OfL5Wfsgh_6evLjEJcnAa-GiCmk0fUel01--xR8HNJlGrFLD8hO49qEDzf3Hvn69s2X1fvi6Pjdh9Xro8Irqcaidug0a1TtK8mMdxUTwqPnteKu9CBUI33lSknLBqTWkonKQaldlhimfMn3yKu17_lUdVh77MfoWnseQ-fipR1csP9W-vDdfhsuLNPMaDkbHGwM4vBjwjTaLiSPbet6HKZkDXDFDQh9K6lLCRykopl8diPJheBCwtz8-Y0g1VxKwUrDbkeBMQOK8Rnd_w89G6bY5zVYPQ-Rcj7_ka2heWcpYrOdGQU7p8f-So-d02M36cmiJ39Peyv5HZcMPN0ALnnXNjGHI6Q_XG6thZKZe7zmAiJuy0LPjTm_Bvzc1MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858851331</pqid></control><display><type>article</type><title>Review: Semiconductor Piezoresistance for Microsystems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barlian, A. Alvin ; Park, Woo-Tae ; Mallon, Joseph R. ; Rastegar, Ali J. ; Pruitt, Beth L.</creator><creatorcontrib>Barlian, A. Alvin ; Park, Woo-Tae ; Mallon, Joseph R. ; Rastegar, Ali J. ; Pruitt, Beth L.</creatorcontrib><description>Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2009.2013612</identifier><identifier>PMID: 20198118</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic wave devices, piezoelectric and piezoresistive devices ; Applied sciences ; Design engineering ; Devices ; Electronics ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials selection ; MEMS ; Micro- and nanoelectromechanical devices (mems/nems) ; Microelectromechanical systems ; Microelectronic fabrication (materials and surfaces technology) ; microfabrication ; Micromachining ; Micromechanical devices ; microsensors ; Physics ; Piezoresistance ; Piezoresistive devices ; piezoresistor ; Piezoresistors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Sensor systems ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Silicon devices</subject><ispartof>Proceedings of the IEEE, 2009-03, Vol.97 (3), p.513-552</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</citedby><cites>FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4811093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21338465$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20198118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlian, A. Alvin</creatorcontrib><creatorcontrib>Park, Woo-Tae</creatorcontrib><creatorcontrib>Mallon, Joseph R.</creatorcontrib><creatorcontrib>Rastegar, Ali J.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><title>Review: Semiconductor Piezoresistance for Microsystems</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><description>Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.</description><subject>Acoustic wave devices, piezoelectric and piezoresistive devices</subject><subject>Applied sciences</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials selection</subject><subject>MEMS</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microelectromechanical systems</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>microfabrication</subject><subject>Micromachining</subject><subject>Micromechanical devices</subject><subject>microsensors</subject><subject>Physics</subject><subject>Piezoresistance</subject><subject>Piezoresistive devices</subject><subject>piezoresistor</subject><subject>Piezoresistors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Silicon devices</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkltrFTEUhYNY7LH6BxTkUND6MnXnOokPghy8Ummp-hwymT2aMpeazFTaX9-M53i8PLQvCWR_a-2w9yLkEYVDSsG8-Hhyerw6ZAAmH5Qryu6QBZVSF4xJdZcsAKguDKNml9xP6QwAuFT8HtnNuNGU6gVRp3gR8OfL5Wfsgh_6evLjEJcnAa-GiCmk0fUel01--xR8HNJlGrFLD8hO49qEDzf3Hvn69s2X1fvi6Pjdh9Xro8Irqcaidug0a1TtK8mMdxUTwqPnteKu9CBUI33lSknLBqTWkonKQaldlhimfMn3yKu17_lUdVh77MfoWnseQ-fipR1csP9W-vDdfhsuLNPMaDkbHGwM4vBjwjTaLiSPbet6HKZkDXDFDQh9K6lLCRykopl8diPJheBCwtz8-Y0g1VxKwUrDbkeBMQOK8Rnd_w89G6bY5zVYPQ-Rcj7_ka2heWcpYrOdGQU7p8f-So-d02M36cmiJ39Peyv5HZcMPN0ALnnXNjGHI6Q_XG6thZKZe7zmAiJuy0LPjTm_Bvzc1MQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Barlian, A. Alvin</creator><creator>Park, Woo-Tae</creator><creator>Mallon, Joseph R.</creator><creator>Rastegar, Ali J.</creator><creator>Pruitt, Beth L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Review: Semiconductor Piezoresistance for Microsystems</title><author>Barlian, A. Alvin ; Park, Woo-Tae ; Mallon, Joseph R. ; Rastegar, Ali J. ; Pruitt, Beth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic wave devices, piezoelectric and piezoresistive devices</topic><topic>Applied sciences</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials selection</topic><topic>MEMS</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microelectromechanical systems</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>microfabrication</topic><topic>Micromachining</topic><topic>Micromechanical devices</topic><topic>microsensors</topic><topic>Physics</topic><topic>Piezoresistance</topic><topic>Piezoresistive devices</topic><topic>piezoresistor</topic><topic>Piezoresistors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Silicon devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlian, A. Alvin</creatorcontrib><creatorcontrib>Park, Woo-Tae</creatorcontrib><creatorcontrib>Mallon, Joseph R.</creatorcontrib><creatorcontrib>Rastegar, Ali J.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlian, A. Alvin</au><au>Park, Woo-Tae</au><au>Mallon, Joseph R.</au><au>Rastegar, Ali J.</au><au>Pruitt, Beth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review: Semiconductor Piezoresistance for Microsystems</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><addtitle>Proc IEEE Inst Electr Electron Eng</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>97</volume><issue>3</issue><spage>513</spage><epage>552</epage><pages>513-552</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>20198118</pmid><doi>10.1109/JPROC.2009.2013612</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2009-03, Vol.97 (3), p.513-552
issn 0018-9219
1558-2256
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2829857
source IEEE Electronic Library (IEL) Journals
subjects Acoustic wave devices, piezoelectric and piezoresistive devices
Applied sciences
Design engineering
Devices
Electronics
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials selection
MEMS
Micro- and nanoelectromechanical devices (mems/nems)
Microelectromechanical systems
Microelectronic fabrication (materials and surfaces technology)
microfabrication
Micromachining
Micromechanical devices
microsensors
Physics
Piezoresistance
Piezoresistive devices
piezoresistor
Piezoresistors
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Sensor systems
Sensors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Silicon devices
title Review: Semiconductor Piezoresistance for Microsystems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review:%20Semiconductor%20Piezoresistance%20for%20Microsystems&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Barlian,%20A.%20Alvin&rft.date=2009-03-01&rft.volume=97&rft.issue=3&rft.spage=513&rft.epage=552&rft.pages=513-552&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2009.2013612&rft_dat=%3Cproquest_pubme%3E2303957681%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c656t-daea82f6dcb529cab244cec3d63a7c046f5cba7517f0588524ba078a2f6926c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=858851331&rft_id=info:pmid/20198118&rft_ieee_id=4811093&rfr_iscdi=true