Loading…
The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function
Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing...
Saved in:
Published in: | The Journal of neuroscience 2010-01, Vol.30 (4), p.1523-1538 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663 |
---|---|
cites | cdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663 |
container_end_page | 1538 |
container_issue | 4 |
container_start_page | 1523 |
container_title | The Journal of neuroscience |
container_volume | 30 |
creator | Wang, Hongtao Hughes, Inna Planer, William Parsadanian, Alexander Grider, John R Vohra, Bhupinder P. S Keller-Peck, Cynthia Heuckeroth, Robert O |
description | Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders. |
doi_str_mv | 10.1523/JNEUROSCI.3861-09.2010 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20107080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</originalsourceid><addsrcrecordid>eNpVkcFu2zAQRImiReMk_YWAp97kLElZlC4FCsdOUhgOEDtngqJWFgtJNEjJbj6hfx0pbo32tAvsmxmQQ8gNgymbcXH7Y714eX7azB-nIk1YBNmUA4MPZDJcs4jHwD6SCXAJURLL-IJchvATACQw-ZlcjKyEFCbk97ZCurWNbXdUtwVdOaM761rqSnpfW13TOdY1XdkWozv09oAFXWPvXefdvrKGLrXpnKeLX3uPIYzKO-zQD4ZIF-2wDcwa_cH1gW5eQ4cN3XS-N13v8T1x2bdmTLwmn0pdB_zyZ16Rl-ViO3-IVk_3j_Pvq8jMEtFFBUcodKahlCLJmcn18CrkcoayYDxP4gxMagqTpkxmnAlj8rLgmRSZkCUkibgi306--z5vsDDYdl7Xau9to_2rctqq_y-trdTOHRRPRSL5bDBITgbGuxA8lmctAzWWo87lqLEcBZkaP3wQ3vybfJb9bWMAvp6Ayu6qo_WoQqPresCZOh6PAlT8HiDeAI40nNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</title><source>PubMed Central</source><creator>Wang, Hongtao ; Hughes, Inna ; Planer, William ; Parsadanian, Alexander ; Grider, John R ; Vohra, Bhupinder P. S ; Keller-Peck, Cynthia ; Heuckeroth, Robert O</creator><creatorcontrib>Wang, Hongtao ; Hughes, Inna ; Planer, William ; Parsadanian, Alexander ; Grider, John R ; Vohra, Bhupinder P. S ; Keller-Peck, Cynthia ; Heuckeroth, Robert O</creatorcontrib><description>Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3861-09.2010</identifier><identifier>PMID: 20107080</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Cell Cycle - genetics ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Cell Proliferation ; Enteric Nervous System - cytology ; Enteric Nervous System - embryology ; Enteric Nervous System - metabolism ; Esophagus - embryology ; Esophagus - innervation ; Gastrointestinal Motility - genetics ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - genetics ; Glial Cell Line-Derived Neurotrophic Factor - genetics ; Glial Cell Line-Derived Neurotrophic Factor - metabolism ; Glial Cell Line-Derived Neurotrophic Factor - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Myenteric Plexus - cytology ; Myenteric Plexus - embryology ; Myenteric Plexus - metabolism ; NADPH Dehydrogenase - metabolism ; Neurites - metabolism ; Neurites - ultrastructure ; Neurogenesis - drug effects ; Neurogenesis - genetics ; Neurons - cytology ; Neurons - metabolism ; Proto-Oncogene Proteins c-ret - genetics ; Proto-Oncogene Proteins c-ret - metabolism ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism</subject><ispartof>The Journal of neuroscience, 2010-01, Vol.30 (4), p.1523-1538</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/301523-16$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</citedby><cites>FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836725/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836725/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20107080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Hughes, Inna</creatorcontrib><creatorcontrib>Planer, William</creatorcontrib><creatorcontrib>Parsadanian, Alexander</creatorcontrib><creatorcontrib>Grider, John R</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S</creatorcontrib><creatorcontrib>Keller-Peck, Cynthia</creatorcontrib><creatorcontrib>Heuckeroth, Robert O</creatorcontrib><title>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.</description><subject>Animals</subject><subject>Cell Cycle - genetics</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Proliferation</subject><subject>Enteric Nervous System - cytology</subject><subject>Enteric Nervous System - embryology</subject><subject>Enteric Nervous System - metabolism</subject><subject>Esophagus - embryology</subject><subject>Esophagus - innervation</subject><subject>Gastrointestinal Motility - genetics</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - genetics</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - metabolism</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Myenteric Plexus - cytology</subject><subject>Myenteric Plexus - embryology</subject><subject>Myenteric Plexus - metabolism</subject><subject>NADPH Dehydrogenase - metabolism</subject><subject>Neurites - metabolism</subject><subject>Neurites - ultrastructure</subject><subject>Neurogenesis - drug effects</subject><subject>Neurogenesis - genetics</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Proto-Oncogene Proteins c-ret - genetics</subject><subject>Proto-Oncogene Proteins c-ret - metabolism</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkcFu2zAQRImiReMk_YWAp97kLElZlC4FCsdOUhgOEDtngqJWFgtJNEjJbj6hfx0pbo32tAvsmxmQQ8gNgymbcXH7Y714eX7azB-nIk1YBNmUA4MPZDJcs4jHwD6SCXAJURLL-IJchvATACQw-ZlcjKyEFCbk97ZCurWNbXdUtwVdOaM761rqSnpfW13TOdY1XdkWozv09oAFXWPvXefdvrKGLrXpnKeLX3uPIYzKO-zQD4ZIF-2wDcwa_cH1gW5eQ4cN3XS-N13v8T1x2bdmTLwmn0pdB_zyZ16Rl-ViO3-IVk_3j_Pvq8jMEtFFBUcodKahlCLJmcn18CrkcoayYDxP4gxMagqTpkxmnAlj8rLgmRSZkCUkibgi306--z5vsDDYdl7Xau9to_2rctqq_y-trdTOHRRPRSL5bDBITgbGuxA8lmctAzWWo87lqLEcBZkaP3wQ3vybfJb9bWMAvp6Ayu6qo_WoQqPresCZOh6PAlT8HiDeAI40nNg</recordid><startdate>20100127</startdate><enddate>20100127</enddate><creator>Wang, Hongtao</creator><creator>Hughes, Inna</creator><creator>Planer, William</creator><creator>Parsadanian, Alexander</creator><creator>Grider, John R</creator><creator>Vohra, Bhupinder P. S</creator><creator>Keller-Peck, Cynthia</creator><creator>Heuckeroth, Robert O</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20100127</creationdate><title>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</title><author>Wang, Hongtao ; Hughes, Inna ; Planer, William ; Parsadanian, Alexander ; Grider, John R ; Vohra, Bhupinder P. S ; Keller-Peck, Cynthia ; Heuckeroth, Robert O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Cell Cycle - genetics</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Proliferation</topic><topic>Enteric Nervous System - cytology</topic><topic>Enteric Nervous System - embryology</topic><topic>Enteric Nervous System - metabolism</topic><topic>Esophagus - embryology</topic><topic>Esophagus - innervation</topic><topic>Gastrointestinal Motility - genetics</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - genetics</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - metabolism</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Myenteric Plexus - cytology</topic><topic>Myenteric Plexus - embryology</topic><topic>Myenteric Plexus - metabolism</topic><topic>NADPH Dehydrogenase - metabolism</topic><topic>Neurites - metabolism</topic><topic>Neurites - ultrastructure</topic><topic>Neurogenesis - drug effects</topic><topic>Neurogenesis - genetics</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Proto-Oncogene Proteins c-ret - genetics</topic><topic>Proto-Oncogene Proteins c-ret - metabolism</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Hughes, Inna</creatorcontrib><creatorcontrib>Planer, William</creatorcontrib><creatorcontrib>Parsadanian, Alexander</creatorcontrib><creatorcontrib>Grider, John R</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S</creatorcontrib><creatorcontrib>Keller-Peck, Cynthia</creatorcontrib><creatorcontrib>Heuckeroth, Robert O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongtao</au><au>Hughes, Inna</au><au>Planer, William</au><au>Parsadanian, Alexander</au><au>Grider, John R</au><au>Vohra, Bhupinder P. S</au><au>Keller-Peck, Cynthia</au><au>Heuckeroth, Robert O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-01-27</date><risdate>2010</risdate><volume>30</volume><issue>4</issue><spage>1523</spage><epage>1538</epage><pages>1523-1538</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>20107080</pmid><doi>10.1523/JNEUROSCI.3861-09.2010</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2010-01, Vol.30 (4), p.1523-1538 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836725 |
source | PubMed Central |
subjects | Animals Cell Cycle - genetics Cell Differentiation - drug effects Cell Differentiation - genetics Cell Proliferation Enteric Nervous System - cytology Enteric Nervous System - embryology Enteric Nervous System - metabolism Esophagus - embryology Esophagus - innervation Gastrointestinal Motility - genetics Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Developmental - genetics Glial Cell Line-Derived Neurotrophic Factor - genetics Glial Cell Line-Derived Neurotrophic Factor - metabolism Glial Cell Line-Derived Neurotrophic Factor - pharmacology Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic Myenteric Plexus - cytology Myenteric Plexus - embryology Myenteric Plexus - metabolism NADPH Dehydrogenase - metabolism Neurites - metabolism Neurites - ultrastructure Neurogenesis - drug effects Neurogenesis - genetics Neurons - cytology Neurons - metabolism Proto-Oncogene Proteins c-ret - genetics Proto-Oncogene Proteins c-ret - metabolism Stem Cells - cytology Stem Cells - drug effects Stem Cells - metabolism |
title | The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Timing%20and%20Location%20of%20Glial%20Cell%20Line-Derived%20Neurotrophic%20Factor%20Expression%20Determine%20Enteric%20Nervous%20System%20Structure%20and%20Function&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wang,%20Hongtao&rft.date=2010-01-27&rft.volume=30&rft.issue=4&rft.spage=1523&rft.epage=1538&rft.pages=1523-1538&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3861-09.2010&rft_dat=%3Cpubmed_cross%3E20107080%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20107080&rfr_iscdi=true |