Loading…

The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function

Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2010-01, Vol.30 (4), p.1523-1538
Main Authors: Wang, Hongtao, Hughes, Inna, Planer, William, Parsadanian, Alexander, Grider, John R, Vohra, Bhupinder P. S, Keller-Peck, Cynthia, Heuckeroth, Robert O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663
cites cdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663
container_end_page 1538
container_issue 4
container_start_page 1523
container_title The Journal of neuroscience
container_volume 30
creator Wang, Hongtao
Hughes, Inna
Planer, William
Parsadanian, Alexander
Grider, John R
Vohra, Bhupinder P. S
Keller-Peck, Cynthia
Heuckeroth, Robert O
description Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.
doi_str_mv 10.1523/JNEUROSCI.3861-09.2010
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20107080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</originalsourceid><addsrcrecordid>eNpVkcFu2zAQRImiReMk_YWAp97kLElZlC4FCsdOUhgOEDtngqJWFgtJNEjJbj6hfx0pbo32tAvsmxmQQ8gNgymbcXH7Y714eX7azB-nIk1YBNmUA4MPZDJcs4jHwD6SCXAJURLL-IJchvATACQw-ZlcjKyEFCbk97ZCurWNbXdUtwVdOaM761rqSnpfW13TOdY1XdkWozv09oAFXWPvXefdvrKGLrXpnKeLX3uPIYzKO-zQD4ZIF-2wDcwa_cH1gW5eQ4cN3XS-N13v8T1x2bdmTLwmn0pdB_zyZ16Rl-ViO3-IVk_3j_Pvq8jMEtFFBUcodKahlCLJmcn18CrkcoayYDxP4gxMagqTpkxmnAlj8rLgmRSZkCUkibgi306--z5vsDDYdl7Xau9to_2rctqq_y-trdTOHRRPRSL5bDBITgbGuxA8lmctAzWWo87lqLEcBZkaP3wQ3vybfJb9bWMAvp6Ayu6qo_WoQqPresCZOh6PAlT8HiDeAI40nNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</title><source>PubMed Central</source><creator>Wang, Hongtao ; Hughes, Inna ; Planer, William ; Parsadanian, Alexander ; Grider, John R ; Vohra, Bhupinder P. S ; Keller-Peck, Cynthia ; Heuckeroth, Robert O</creator><creatorcontrib>Wang, Hongtao ; Hughes, Inna ; Planer, William ; Parsadanian, Alexander ; Grider, John R ; Vohra, Bhupinder P. S ; Keller-Peck, Cynthia ; Heuckeroth, Robert O</creatorcontrib><description>Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.3861-09.2010</identifier><identifier>PMID: 20107080</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Cell Cycle - genetics ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Cell Proliferation ; Enteric Nervous System - cytology ; Enteric Nervous System - embryology ; Enteric Nervous System - metabolism ; Esophagus - embryology ; Esophagus - innervation ; Gastrointestinal Motility - genetics ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - genetics ; Glial Cell Line-Derived Neurotrophic Factor - genetics ; Glial Cell Line-Derived Neurotrophic Factor - metabolism ; Glial Cell Line-Derived Neurotrophic Factor - pharmacology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Myenteric Plexus - cytology ; Myenteric Plexus - embryology ; Myenteric Plexus - metabolism ; NADPH Dehydrogenase - metabolism ; Neurites - metabolism ; Neurites - ultrastructure ; Neurogenesis - drug effects ; Neurogenesis - genetics ; Neurons - cytology ; Neurons - metabolism ; Proto-Oncogene Proteins c-ret - genetics ; Proto-Oncogene Proteins c-ret - metabolism ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism</subject><ispartof>The Journal of neuroscience, 2010-01, Vol.30 (4), p.1523-1538</ispartof><rights>Copyright © 2010 the authors 0270-6474/10/301523-16$15.00/0 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</citedby><cites>FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836725/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836725/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20107080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Hughes, Inna</creatorcontrib><creatorcontrib>Planer, William</creatorcontrib><creatorcontrib>Parsadanian, Alexander</creatorcontrib><creatorcontrib>Grider, John R</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S</creatorcontrib><creatorcontrib>Keller-Peck, Cynthia</creatorcontrib><creatorcontrib>Heuckeroth, Robert O</creatorcontrib><title>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.</description><subject>Animals</subject><subject>Cell Cycle - genetics</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Proliferation</subject><subject>Enteric Nervous System - cytology</subject><subject>Enteric Nervous System - embryology</subject><subject>Enteric Nervous System - metabolism</subject><subject>Esophagus - embryology</subject><subject>Esophagus - innervation</subject><subject>Gastrointestinal Motility - genetics</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - genetics</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - metabolism</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Myenteric Plexus - cytology</subject><subject>Myenteric Plexus - embryology</subject><subject>Myenteric Plexus - metabolism</subject><subject>NADPH Dehydrogenase - metabolism</subject><subject>Neurites - metabolism</subject><subject>Neurites - ultrastructure</subject><subject>Neurogenesis - drug effects</subject><subject>Neurogenesis - genetics</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Proto-Oncogene Proteins c-ret - genetics</subject><subject>Proto-Oncogene Proteins c-ret - metabolism</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkcFu2zAQRImiReMk_YWAp97kLElZlC4FCsdOUhgOEDtngqJWFgtJNEjJbj6hfx0pbo32tAvsmxmQQ8gNgymbcXH7Y714eX7azB-nIk1YBNmUA4MPZDJcs4jHwD6SCXAJURLL-IJchvATACQw-ZlcjKyEFCbk97ZCurWNbXdUtwVdOaM761rqSnpfW13TOdY1XdkWozv09oAFXWPvXefdvrKGLrXpnKeLX3uPIYzKO-zQD4ZIF-2wDcwa_cH1gW5eQ4cN3XS-N13v8T1x2bdmTLwmn0pdB_zyZ16Rl-ViO3-IVk_3j_Pvq8jMEtFFBUcodKahlCLJmcn18CrkcoayYDxP4gxMagqTpkxmnAlj8rLgmRSZkCUkibgi306--z5vsDDYdl7Xau9to_2rctqq_y-trdTOHRRPRSL5bDBITgbGuxA8lmctAzWWo87lqLEcBZkaP3wQ3vybfJb9bWMAvp6Ayu6qo_WoQqPresCZOh6PAlT8HiDeAI40nNg</recordid><startdate>20100127</startdate><enddate>20100127</enddate><creator>Wang, Hongtao</creator><creator>Hughes, Inna</creator><creator>Planer, William</creator><creator>Parsadanian, Alexander</creator><creator>Grider, John R</creator><creator>Vohra, Bhupinder P. S</creator><creator>Keller-Peck, Cynthia</creator><creator>Heuckeroth, Robert O</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20100127</creationdate><title>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</title><author>Wang, Hongtao ; Hughes, Inna ; Planer, William ; Parsadanian, Alexander ; Grider, John R ; Vohra, Bhupinder P. S ; Keller-Peck, Cynthia ; Heuckeroth, Robert O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Cell Cycle - genetics</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Proliferation</topic><topic>Enteric Nervous System - cytology</topic><topic>Enteric Nervous System - embryology</topic><topic>Enteric Nervous System - metabolism</topic><topic>Esophagus - embryology</topic><topic>Esophagus - innervation</topic><topic>Gastrointestinal Motility - genetics</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - genetics</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - metabolism</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Myenteric Plexus - cytology</topic><topic>Myenteric Plexus - embryology</topic><topic>Myenteric Plexus - metabolism</topic><topic>NADPH Dehydrogenase - metabolism</topic><topic>Neurites - metabolism</topic><topic>Neurites - ultrastructure</topic><topic>Neurogenesis - drug effects</topic><topic>Neurogenesis - genetics</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Proto-Oncogene Proteins c-ret - genetics</topic><topic>Proto-Oncogene Proteins c-ret - metabolism</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongtao</creatorcontrib><creatorcontrib>Hughes, Inna</creatorcontrib><creatorcontrib>Planer, William</creatorcontrib><creatorcontrib>Parsadanian, Alexander</creatorcontrib><creatorcontrib>Grider, John R</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S</creatorcontrib><creatorcontrib>Keller-Peck, Cynthia</creatorcontrib><creatorcontrib>Heuckeroth, Robert O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongtao</au><au>Hughes, Inna</au><au>Planer, William</au><au>Parsadanian, Alexander</au><au>Grider, John R</au><au>Vohra, Bhupinder P. S</au><au>Keller-Peck, Cynthia</au><au>Heuckeroth, Robert O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2010-01-27</date><risdate>2010</risdate><volume>30</volume><issue>4</issue><spage>1523</spage><epage>1538</epage><pages>1523-1538</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>20107080</pmid><doi>10.1523/JNEUROSCI.3861-09.2010</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2010-01, Vol.30 (4), p.1523-1538
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836725
source PubMed Central
subjects Animals
Cell Cycle - genetics
Cell Differentiation - drug effects
Cell Differentiation - genetics
Cell Proliferation
Enteric Nervous System - cytology
Enteric Nervous System - embryology
Enteric Nervous System - metabolism
Esophagus - embryology
Esophagus - innervation
Gastrointestinal Motility - genetics
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Developmental - genetics
Glial Cell Line-Derived Neurotrophic Factor - genetics
Glial Cell Line-Derived Neurotrophic Factor - metabolism
Glial Cell Line-Derived Neurotrophic Factor - pharmacology
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Myenteric Plexus - cytology
Myenteric Plexus - embryology
Myenteric Plexus - metabolism
NADPH Dehydrogenase - metabolism
Neurites - metabolism
Neurites - ultrastructure
Neurogenesis - drug effects
Neurogenesis - genetics
Neurons - cytology
Neurons - metabolism
Proto-Oncogene Proteins c-ret - genetics
Proto-Oncogene Proteins c-ret - metabolism
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - metabolism
title The Timing and Location of Glial Cell Line-Derived Neurotrophic Factor Expression Determine Enteric Nervous System Structure and Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Timing%20and%20Location%20of%20Glial%20Cell%20Line-Derived%20Neurotrophic%20Factor%20Expression%20Determine%20Enteric%20Nervous%20System%20Structure%20and%20Function&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Wang,%20Hongtao&rft.date=2010-01-27&rft.volume=30&rft.issue=4&rft.spage=1523&rft.epage=1538&rft.pages=1523-1538&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.3861-09.2010&rft_dat=%3Cpubmed_cross%3E20107080%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c563t-d2e0da9a0f736b1cba007e275e7d12b6490c8cdc88179213ccbfd2973937f0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20107080&rfr_iscdi=true