Loading…

Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease

Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to genera...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-03, Vol.285 (12), p.8808-8823
Main Authors: Landles, Christian, Sathasivam, Kirupa, Weiss, Andreas, Woodman, Ben, Moffitt, Hilary, Finkbeiner, Steve, Sun, Banghua, Gafni, Juliette, Ellerby, Lisa M., Trottier, Yvon, Richards, William G., Osmand, Alex, Paganetti, Paolo, Bates, Gillian P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-1143ecea32c7e348f5eb845a6ca57f9515187bfdd6efbffd74187941151ca7df3
cites cdi_FETCH-LOGICAL-c606t-1143ecea32c7e348f5eb845a6ca57f9515187bfdd6efbffd74187941151ca7df3
container_end_page 8823
container_issue 12
container_start_page 8808
container_title The Journal of biological chemistry
container_volume 285
creator Landles, Christian
Sathasivam, Kirupa
Weiss, Andreas
Woodman, Ben
Moffitt, Hilary
Finkbeiner, Steve
Sun, Banghua
Gafni, Juliette
Ellerby, Lisa M.
Trottier, Yvon
Richards, William G.
Osmand, Alex
Paganetti, Paolo
Bates, Gillian P.
description Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to generate proteolytic cleavage maps of mutant and wild-type huntingtin in the HdhQ150 knock-in mouse model of HD. We identified 14 prominent N-terminal fragments, which, in addition to the full-length protein, can be readily detected in cytoplasmic but not nuclear fractions. These fragments were detected at all ages and are not a consequence of the pathogenic process. We demonstrated that the smallest fragment is an exon 1 huntingtin protein, known to contain a potent nuclear export signal. Prior to the onset of behavioral phenotypes, the exon 1 protein, and possibly other small fragments, accumulate in neuronal nuclei in the form of a detergent insoluble complex, visualized as diffuse granular nuclear staining in tissue sections. This methodology can be used to validate the inhibition of specific proteases as therapeutic targets for HD by pharmacological or genetic approaches.
doi_str_mv 10.1074/jbc.M109.075028
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820872792</els_id><sourcerecordid>744705870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-1143ecea32c7e348f5eb845a6ca57f9515187bfdd6efbffd74187941151ca7df3</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEokvhzA0icUAcsh3HcexcKq1KyyJtCxKtxM1ynEnWVRIXO1noU_DKOM22AiSEZcvy-PPvGc0fRS8JLAnw7Oi61MtzAsUSOINUPIoWBARNKCNfH0cLgJQkRcrEQfTM-2sIIyvI0-ggBRA5AF9EPz87O6Btb73xsa3j83FQ_RCvx34wfRNWHIBq1Ohj1cenP2wfk_jMqabDgF1u1RCvtB67sVXDxNxhq6Zx2IRAFd_JB5UwL3B0tldtfDHqFs0Uuv8mqL43HpXH59GTWrUeX-z3w-jq7PTyZJ1sPn34eLLaJDqHfEgIyShqVDTVHGkmaoalyJjKtWK8LhhhRPCyrqoc67KuK56Fc5GRENeKVzU9jI5n3Zux7LDSoRqnWnnjTKfcrbTKyD9verOVjd3JVFBBgQaBd7PA9q9n69VGTjGgDChJ8x0J7Nv9Z85-G9EPsjNeY9uqHu3oJc8yDkxw-D9JKQ-tKybyaCa1s947rB-SICAnb8jgDTl5Q87eCC9e_V7yA39vhgC82Zdkmu1341CWxuotdqFoJkkqhYBJ5vVM1cpK1Tjj5dWXFAgFIghlRRGIYiYwNHBn0EmvDfYaq6CpB1lZ888kfwFNed9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733708690</pqid></control><display><type>article</type><title>Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease</title><source>ScienceDirect Additional Titles</source><source>PubMed Central</source><creator>Landles, Christian ; Sathasivam, Kirupa ; Weiss, Andreas ; Woodman, Ben ; Moffitt, Hilary ; Finkbeiner, Steve ; Sun, Banghua ; Gafni, Juliette ; Ellerby, Lisa M. ; Trottier, Yvon ; Richards, William G. ; Osmand, Alex ; Paganetti, Paolo ; Bates, Gillian P.</creator><creatorcontrib>Landles, Christian ; Sathasivam, Kirupa ; Weiss, Andreas ; Woodman, Ben ; Moffitt, Hilary ; Finkbeiner, Steve ; Sun, Banghua ; Gafni, Juliette ; Ellerby, Lisa M. ; Trottier, Yvon ; Richards, William G. ; Osmand, Alex ; Paganetti, Paolo ; Bates, Gillian P.</creatorcontrib><description>Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to generate proteolytic cleavage maps of mutant and wild-type huntingtin in the HdhQ150 knock-in mouse model of HD. We identified 14 prominent N-terminal fragments, which, in addition to the full-length protein, can be readily detected in cytoplasmic but not nuclear fractions. These fragments were detected at all ages and are not a consequence of the pathogenic process. We demonstrated that the smallest fragment is an exon 1 huntingtin protein, known to contain a potent nuclear export signal. Prior to the onset of behavioral phenotypes, the exon 1 protein, and possibly other small fragments, accumulate in neuronal nuclei in the form of a detergent insoluble complex, visualized as diffuse granular nuclear staining in tissue sections. This methodology can be used to validate the inhibition of specific proteases as therapeutic targets for HD by pharmacological or genetic approaches.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.075028</identifier><identifier>PMID: 20086007</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calpain - chemistry ; Cell Nucleus - metabolism ; Chlorocebus aethiops ; COS Cells ; Cytoplasm - metabolism ; Disease Models, Animal ; Exons ; Genotype ; HdhQ150 Knock-in Mouse ; Huntingtin ; Huntingtin Protein ; Huntington Disease ; Huntington Disease - metabolism ; Life Sciences ; Mice ; Molecular Bases of Disease ; Mouse ; Mutation ; Nerve Tissue Proteins - genetics ; Neurodegeneration ; Neurons - metabolism ; Neurons and Cognition ; Nuclear Proteins - genetics ; Polyglutamine Disease ; Protein Structure, Tertiary ; Proteolytic Enzymes ; R6/2 Mouse</subject><ispartof>The Journal of biological chemistry, 2010-03, Vol.285 (12), p.8808-8823</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-1143ecea32c7e348f5eb845a6ca57f9515187bfdd6efbffd74187941151ca7df3</citedby><cites>FETCH-LOGICAL-c606t-1143ecea32c7e348f5eb845a6ca57f9515187bfdd6efbffd74187941151ca7df3</cites><orcidid>0000-0003-1896-6324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838303/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820872792$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20086007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03503126$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Landles, Christian</creatorcontrib><creatorcontrib>Sathasivam, Kirupa</creatorcontrib><creatorcontrib>Weiss, Andreas</creatorcontrib><creatorcontrib>Woodman, Ben</creatorcontrib><creatorcontrib>Moffitt, Hilary</creatorcontrib><creatorcontrib>Finkbeiner, Steve</creatorcontrib><creatorcontrib>Sun, Banghua</creatorcontrib><creatorcontrib>Gafni, Juliette</creatorcontrib><creatorcontrib>Ellerby, Lisa M.</creatorcontrib><creatorcontrib>Trottier, Yvon</creatorcontrib><creatorcontrib>Richards, William G.</creatorcontrib><creatorcontrib>Osmand, Alex</creatorcontrib><creatorcontrib>Paganetti, Paolo</creatorcontrib><creatorcontrib>Bates, Gillian P.</creatorcontrib><title>Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to generate proteolytic cleavage maps of mutant and wild-type huntingtin in the HdhQ150 knock-in mouse model of HD. We identified 14 prominent N-terminal fragments, which, in addition to the full-length protein, can be readily detected in cytoplasmic but not nuclear fractions. These fragments were detected at all ages and are not a consequence of the pathogenic process. We demonstrated that the smallest fragment is an exon 1 huntingtin protein, known to contain a potent nuclear export signal. Prior to the onset of behavioral phenotypes, the exon 1 protein, and possibly other small fragments, accumulate in neuronal nuclei in the form of a detergent insoluble complex, visualized as diffuse granular nuclear staining in tissue sections. This methodology can be used to validate the inhibition of specific proteases as therapeutic targets for HD by pharmacological or genetic approaches.</description><subject>Animals</subject><subject>Calpain - chemistry</subject><subject>Cell Nucleus - metabolism</subject><subject>Chlorocebus aethiops</subject><subject>COS Cells</subject><subject>Cytoplasm - metabolism</subject><subject>Disease Models, Animal</subject><subject>Exons</subject><subject>Genotype</subject><subject>HdhQ150 Knock-in Mouse</subject><subject>Huntingtin</subject><subject>Huntingtin Protein</subject><subject>Huntington Disease</subject><subject>Huntington Disease - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Molecular Bases of Disease</subject><subject>Mouse</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurodegeneration</subject><subject>Neurons - metabolism</subject><subject>Neurons and Cognition</subject><subject>Nuclear Proteins - genetics</subject><subject>Polyglutamine Disease</subject><subject>Protein Structure, Tertiary</subject><subject>Proteolytic Enzymes</subject><subject>R6/2 Mouse</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFksFu1DAQhiMEokvhzA0icUAcsh3HcexcKq1KyyJtCxKtxM1ynEnWVRIXO1noU_DKOM22AiSEZcvy-PPvGc0fRS8JLAnw7Oi61MtzAsUSOINUPIoWBARNKCNfH0cLgJQkRcrEQfTM-2sIIyvI0-ggBRA5AF9EPz87O6Btb73xsa3j83FQ_RCvx34wfRNWHIBq1Ohj1cenP2wfk_jMqabDgF1u1RCvtB67sVXDxNxhq6Zx2IRAFd_JB5UwL3B0tldtfDHqFs0Uuv8mqL43HpXH59GTWrUeX-z3w-jq7PTyZJ1sPn34eLLaJDqHfEgIyShqVDTVHGkmaoalyJjKtWK8LhhhRPCyrqoc67KuK56Fc5GRENeKVzU9jI5n3Zux7LDSoRqnWnnjTKfcrbTKyD9verOVjd3JVFBBgQaBd7PA9q9n69VGTjGgDChJ8x0J7Nv9Z85-G9EPsjNeY9uqHu3oJc8yDkxw-D9JKQ-tKybyaCa1s947rB-SICAnb8jgDTl5Q87eCC9e_V7yA39vhgC82Zdkmu1341CWxuotdqFoJkkqhYBJ5vVM1cpK1Tjj5dWXFAgFIghlRRGIYiYwNHBn0EmvDfYaq6CpB1lZ888kfwFNed9I</recordid><startdate>20100319</startdate><enddate>20100319</enddate><creator>Landles, Christian</creator><creator>Sathasivam, Kirupa</creator><creator>Weiss, Andreas</creator><creator>Woodman, Ben</creator><creator>Moffitt, Hilary</creator><creator>Finkbeiner, Steve</creator><creator>Sun, Banghua</creator><creator>Gafni, Juliette</creator><creator>Ellerby, Lisa M.</creator><creator>Trottier, Yvon</creator><creator>Richards, William G.</creator><creator>Osmand, Alex</creator><creator>Paganetti, Paolo</creator><creator>Bates, Gillian P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7TM</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1896-6324</orcidid></search><sort><creationdate>20100319</creationdate><title>Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease</title><author>Landles, Christian ; Sathasivam, Kirupa ; Weiss, Andreas ; Woodman, Ben ; Moffitt, Hilary ; Finkbeiner, Steve ; Sun, Banghua ; Gafni, Juliette ; Ellerby, Lisa M. ; Trottier, Yvon ; Richards, William G. ; Osmand, Alex ; Paganetti, Paolo ; Bates, Gillian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-1143ecea32c7e348f5eb845a6ca57f9515187bfdd6efbffd74187941151ca7df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Calpain - chemistry</topic><topic>Cell Nucleus - metabolism</topic><topic>Chlorocebus aethiops</topic><topic>COS Cells</topic><topic>Cytoplasm - metabolism</topic><topic>Disease Models, Animal</topic><topic>Exons</topic><topic>Genotype</topic><topic>HdhQ150 Knock-in Mouse</topic><topic>Huntingtin</topic><topic>Huntingtin Protein</topic><topic>Huntington Disease</topic><topic>Huntington Disease - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Molecular Bases of Disease</topic><topic>Mouse</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurodegeneration</topic><topic>Neurons - metabolism</topic><topic>Neurons and Cognition</topic><topic>Nuclear Proteins - genetics</topic><topic>Polyglutamine Disease</topic><topic>Protein Structure, Tertiary</topic><topic>Proteolytic Enzymes</topic><topic>R6/2 Mouse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landles, Christian</creatorcontrib><creatorcontrib>Sathasivam, Kirupa</creatorcontrib><creatorcontrib>Weiss, Andreas</creatorcontrib><creatorcontrib>Woodman, Ben</creatorcontrib><creatorcontrib>Moffitt, Hilary</creatorcontrib><creatorcontrib>Finkbeiner, Steve</creatorcontrib><creatorcontrib>Sun, Banghua</creatorcontrib><creatorcontrib>Gafni, Juliette</creatorcontrib><creatorcontrib>Ellerby, Lisa M.</creatorcontrib><creatorcontrib>Trottier, Yvon</creatorcontrib><creatorcontrib>Richards, William G.</creatorcontrib><creatorcontrib>Osmand, Alex</creatorcontrib><creatorcontrib>Paganetti, Paolo</creatorcontrib><creatorcontrib>Bates, Gillian P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landles, Christian</au><au>Sathasivam, Kirupa</au><au>Weiss, Andreas</au><au>Woodman, Ben</au><au>Moffitt, Hilary</au><au>Finkbeiner, Steve</au><au>Sun, Banghua</au><au>Gafni, Juliette</au><au>Ellerby, Lisa M.</au><au>Trottier, Yvon</au><au>Richards, William G.</au><au>Osmand, Alex</au><au>Paganetti, Paolo</au><au>Bates, Gillian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-03-19</date><risdate>2010</risdate><volume>285</volume><issue>12</issue><spage>8808</spage><epage>8823</epage><pages>8808-8823</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Huntingtin proteolysis has been implicated in the molecular pathogenesis of Huntington disease (HD). Despite an intense effort, the identity of the pathogenic smallest N-terminal fragment has not been determined. Using a panel of anti-huntingtin antibodies, we employed an unbiased approach to generate proteolytic cleavage maps of mutant and wild-type huntingtin in the HdhQ150 knock-in mouse model of HD. We identified 14 prominent N-terminal fragments, which, in addition to the full-length protein, can be readily detected in cytoplasmic but not nuclear fractions. These fragments were detected at all ages and are not a consequence of the pathogenic process. We demonstrated that the smallest fragment is an exon 1 huntingtin protein, known to contain a potent nuclear export signal. Prior to the onset of behavioral phenotypes, the exon 1 protein, and possibly other small fragments, accumulate in neuronal nuclei in the form of a detergent insoluble complex, visualized as diffuse granular nuclear staining in tissue sections. This methodology can be used to validate the inhibition of specific proteases as therapeutic targets for HD by pharmacological or genetic approaches.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20086007</pmid><doi>10.1074/jbc.M109.075028</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1896-6324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-03, Vol.285 (12), p.8808-8823
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2838303
source ScienceDirect Additional Titles; PubMed Central
subjects Animals
Calpain - chemistry
Cell Nucleus - metabolism
Chlorocebus aethiops
COS Cells
Cytoplasm - metabolism
Disease Models, Animal
Exons
Genotype
HdhQ150 Knock-in Mouse
Huntingtin
Huntingtin Protein
Huntington Disease
Huntington Disease - metabolism
Life Sciences
Mice
Molecular Bases of Disease
Mouse
Mutation
Nerve Tissue Proteins - genetics
Neurodegeneration
Neurons - metabolism
Neurons and Cognition
Nuclear Proteins - genetics
Polyglutamine Disease
Protein Structure, Tertiary
Proteolytic Enzymes
R6/2 Mouse
title Proteolysis of Mutant Huntingtin Produces an Exon 1 Fragment That Accumulates as an Aggregated Protein in Neuronal Nuclei in Huntington Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolysis%20of%20Mutant%20Huntingtin%20Produces%20an%20Exon%201%20Fragment%20That%20Accumulates%20as%20an%20Aggregated%20Protein%20in%20Neuronal%20Nuclei%20in%20Huntington%20Disease&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Landles,%20Christian&rft.date=2010-03-19&rft.volume=285&rft.issue=12&rft.spage=8808&rft.epage=8823&rft.pages=8808-8823&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.075028&rft_dat=%3Cproquest_pubme%3E744705870%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-1143ecea32c7e348f5eb845a6ca57f9515187bfdd6efbffd74187941151ca7df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733708690&rft_id=info:pmid/20086007&rfr_iscdi=true