Loading…

A small sample study of the STEPP approach to assessing treatment-covariate interactions in survival data

A new, intuitive method has recently been proposed to explore treatment–covariate interactions in survival data arising from two treatment arms of a clinical trial. The method is based on constructing overlapping subpopulations of patients with respect to one (or more) covariates of interest and in...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2009-04, Vol.28 (8), p.1255-1268
Main Authors: Bonetti, Marco, Zahrieh, David, Cole, Bernard F., Gelber, Richard D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new, intuitive method has recently been proposed to explore treatment–covariate interactions in survival data arising from two treatment arms of a clinical trial. The method is based on constructing overlapping subpopulations of patients with respect to one (or more) covariates of interest and in observing the pattern of the treatment effects estimated across the subpopulations. A plot of these treatment effects is called a subpopulation treatment effect pattern plot. Here, we explore the small sample characteristics of the asymptotic results associated with the method and develop an alternative permutation distribution‐based approach to inference that should be preferred for smaller sample sizes. We then describe an extension of the method to the case in which the pattern of estimated quantiles of survivor functions is of interest. Copyright © 2009 John Wiley & Sons, Ltd.
ISSN:0277-6715
1097-0258
DOI:10.1002/sim.3524