Loading…

The Scaffold Protein Shoc2/SUR-8 Accelerates the Interaction of Ras and Raf

Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epid...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-03, Vol.285 (10), p.7818-7826
Main Authors: Matsunaga-Udagawa, Rie, Fujita, Yoshihisa, Yoshiki, Sayaka, Terai, Kenta, Kamioka, Yuji, Kiyokawa, Etsuko, Yugi, Katsuyuki, Aoki, Kazuhiro, Matsuda, Michiyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-3c0483ffd6519d0471cf968f1f097dc39c5a33be2f7670fea02e6fcab0d8be513
cites cdi_FETCH-LOGICAL-c560t-3c0483ffd6519d0471cf968f1f097dc39c5a33be2f7670fea02e6fcab0d8be513
container_end_page 7826
container_issue 10
container_start_page 7818
container_title The Journal of biological chemistry
container_volume 285
creator Matsunaga-Udagawa, Rie
Fujita, Yoshihisa
Yoshiki, Sayaka
Terai, Kenta
Kamioka, Yuji
Kiyokawa, Etsuko
Yugi, Katsuyuki
Aoki, Kazuhiro
Matsuda, Michiyuki
description Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.
doi_str_mv 10.1074/jbc.M109.053975
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2844225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819587646</els_id><sourcerecordid>733690202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-3c0483ffd6519d0471cf968f1f097dc39c5a33be2f7670fea02e6fcab0d8be513</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EokvhzA0iceCU3bEdJ_YFqaoKrSgCdbsSN8txxhtX2bjY2Vb8e7xKW8EBX0aWv3l-M4-QtxSWFJpqddPa5TcKagmCq0Y8IwsKkpdc0J_PyQKA0VIxIY_Iq5RuIJ9K0ZfkiAEIKhgsyNfrHou1Nc6FoSt-xDChH4t1HyxbrTdXpSxOrMUBo5kwFVOGL8Yp3-zkw1gEV1yZVJixy9W9Ji-cGRK-eajHZPP57Pr0vLz8_uXi9OSytKKGqeQWKsmd62pBVQdVQ61TtXTUgWo6y5UVhvMWmWvqBhwaYFg7a1roZIuC8mPyada93bc77CyOUzSDvo1-Z-JvHYzX_76MvtfbcKeZrCrGRBb4-CAQw689pknvfMpTDmbEsE-64bxWwIBlcjWTNoaUIrqnXyjoQwI6J6APCeg5gdzx7m9zT_zjyjPwYQZ6v-3vfUTd-mB73GV74iDbSCoz9X6mnAnabKNPerNmQDlQCZJWTSbUTGBe9Z3HqJP1OFrssqaddBf8f03-AaboqXc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733690202</pqid></control><display><type>article</type><title>The Scaffold Protein Shoc2/SUR-8 Accelerates the Interaction of Ras and Raf</title><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Matsunaga-Udagawa, Rie ; Fujita, Yoshihisa ; Yoshiki, Sayaka ; Terai, Kenta ; Kamioka, Yuji ; Kiyokawa, Etsuko ; Yugi, Katsuyuki ; Aoki, Kazuhiro ; Matsuda, Michiyuki</creator><creatorcontrib>Matsunaga-Udagawa, Rie ; Fujita, Yoshihisa ; Yoshiki, Sayaka ; Terai, Kenta ; Kamioka, Yuji ; Kiyokawa, Etsuko ; Yugi, Katsuyuki ; Aoki, Kazuhiro ; Matsuda, Michiyuki</creatorcontrib><description>Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.053975</identifier><identifier>PMID: 20051520</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biosensing Techniques ; Cell/Mitogens ; Computer Simulation ; Enzyme Activation ; Epidermal Growth Factor - metabolism ; Extracellular Signal-Regulated MAP Kinases - genetics ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Fluorescence Resonance Energy Transfer ; Fluorescence Resonance Energy Transfer - methods ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Methods/Computer Modeling ; Methods/Microscopic Imaging ; Mitogen-Activated Protein Kinase Kinases - genetics ; Mitogen-Activated Protein Kinase Kinases - metabolism ; Phosphorylation ; Phosphorylation/Kinases/Serine-Threonine ; Protein Binding ; Raf ; raf Kinases - genetics ; raf Kinases - metabolism ; Ras ; ras Proteins - genetics ; ras Proteins - metabolism ; RNA Interference ; Shoc2/SUR-8 ; Signal Transduction ; Signal Transduction - physiology ; Signal Transduction/Protein Kinases/MAP</subject><ispartof>The Journal of biological chemistry, 2010-03, Vol.285 (10), p.7818-7826</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-3c0483ffd6519d0471cf968f1f097dc39c5a33be2f7670fea02e6fcab0d8be513</citedby><cites>FETCH-LOGICAL-c560t-3c0483ffd6519d0471cf968f1f097dc39c5a33be2f7670fea02e6fcab0d8be513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844225/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819587646$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20051520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsunaga-Udagawa, Rie</creatorcontrib><creatorcontrib>Fujita, Yoshihisa</creatorcontrib><creatorcontrib>Yoshiki, Sayaka</creatorcontrib><creatorcontrib>Terai, Kenta</creatorcontrib><creatorcontrib>Kamioka, Yuji</creatorcontrib><creatorcontrib>Kiyokawa, Etsuko</creatorcontrib><creatorcontrib>Yugi, Katsuyuki</creatorcontrib><creatorcontrib>Aoki, Kazuhiro</creatorcontrib><creatorcontrib>Matsuda, Michiyuki</creatorcontrib><title>The Scaffold Protein Shoc2/SUR-8 Accelerates the Interaction of Ras and Raf</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.</description><subject>Animals</subject><subject>Biosensing Techniques</subject><subject>Cell/Mitogens</subject><subject>Computer Simulation</subject><subject>Enzyme Activation</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - genetics</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Methods/Computer Modeling</subject><subject>Methods/Microscopic Imaging</subject><subject>Mitogen-Activated Protein Kinase Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinase Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Phosphorylation/Kinases/Serine-Threonine</subject><subject>Protein Binding</subject><subject>Raf</subject><subject>raf Kinases - genetics</subject><subject>raf Kinases - metabolism</subject><subject>Ras</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - metabolism</subject><subject>RNA Interference</subject><subject>Shoc2/SUR-8</subject><subject>Signal Transduction</subject><subject>Signal Transduction - physiology</subject><subject>Signal Transduction/Protein Kinases/MAP</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EokvhzA0iceCU3bEdJ_YFqaoKrSgCdbsSN8txxhtX2bjY2Vb8e7xKW8EBX0aWv3l-M4-QtxSWFJpqddPa5TcKagmCq0Y8IwsKkpdc0J_PyQKA0VIxIY_Iq5RuIJ9K0ZfkiAEIKhgsyNfrHou1Nc6FoSt-xDChH4t1HyxbrTdXpSxOrMUBo5kwFVOGL8Yp3-zkw1gEV1yZVJixy9W9Ji-cGRK-eajHZPP57Pr0vLz8_uXi9OSytKKGqeQWKsmd62pBVQdVQ61TtXTUgWo6y5UVhvMWmWvqBhwaYFg7a1roZIuC8mPyada93bc77CyOUzSDvo1-Z-JvHYzX_76MvtfbcKeZrCrGRBb4-CAQw689pknvfMpTDmbEsE-64bxWwIBlcjWTNoaUIrqnXyjoQwI6J6APCeg5gdzx7m9zT_zjyjPwYQZ6v-3vfUTd-mB73GV74iDbSCoz9X6mnAnabKNPerNmQDlQCZJWTSbUTGBe9Z3HqJP1OFrssqaddBf8f03-AaboqXc</recordid><startdate>20100305</startdate><enddate>20100305</enddate><creator>Matsunaga-Udagawa, Rie</creator><creator>Fujita, Yoshihisa</creator><creator>Yoshiki, Sayaka</creator><creator>Terai, Kenta</creator><creator>Kamioka, Yuji</creator><creator>Kiyokawa, Etsuko</creator><creator>Yugi, Katsuyuki</creator><creator>Aoki, Kazuhiro</creator><creator>Matsuda, Michiyuki</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100305</creationdate><title>The Scaffold Protein Shoc2/SUR-8 Accelerates the Interaction of Ras and Raf</title><author>Matsunaga-Udagawa, Rie ; Fujita, Yoshihisa ; Yoshiki, Sayaka ; Terai, Kenta ; Kamioka, Yuji ; Kiyokawa, Etsuko ; Yugi, Katsuyuki ; Aoki, Kazuhiro ; Matsuda, Michiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-3c0483ffd6519d0471cf968f1f097dc39c5a33be2f7670fea02e6fcab0d8be513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biosensing Techniques</topic><topic>Cell/Mitogens</topic><topic>Computer Simulation</topic><topic>Enzyme Activation</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - genetics</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Methods/Computer Modeling</topic><topic>Methods/Microscopic Imaging</topic><topic>Mitogen-Activated Protein Kinase Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinase Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Phosphorylation/Kinases/Serine-Threonine</topic><topic>Protein Binding</topic><topic>Raf</topic><topic>raf Kinases - genetics</topic><topic>raf Kinases - metabolism</topic><topic>Ras</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - metabolism</topic><topic>RNA Interference</topic><topic>Shoc2/SUR-8</topic><topic>Signal Transduction</topic><topic>Signal Transduction - physiology</topic><topic>Signal Transduction/Protein Kinases/MAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsunaga-Udagawa, Rie</creatorcontrib><creatorcontrib>Fujita, Yoshihisa</creatorcontrib><creatorcontrib>Yoshiki, Sayaka</creatorcontrib><creatorcontrib>Terai, Kenta</creatorcontrib><creatorcontrib>Kamioka, Yuji</creatorcontrib><creatorcontrib>Kiyokawa, Etsuko</creatorcontrib><creatorcontrib>Yugi, Katsuyuki</creatorcontrib><creatorcontrib>Aoki, Kazuhiro</creatorcontrib><creatorcontrib>Matsuda, Michiyuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsunaga-Udagawa, Rie</au><au>Fujita, Yoshihisa</au><au>Yoshiki, Sayaka</au><au>Terai, Kenta</au><au>Kamioka, Yuji</au><au>Kiyokawa, Etsuko</au><au>Yugi, Katsuyuki</au><au>Aoki, Kazuhiro</au><au>Matsuda, Michiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Scaffold Protein Shoc2/SUR-8 Accelerates the Interaction of Ras and Raf</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-03-05</date><risdate>2010</risdate><volume>285</volume><issue>10</issue><spage>7818</spage><epage>7826</epage><pages>7818-7826</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Shoc2/SUR-8 positively regulates Ras/ERK MAP kinase signaling by serving as a scaffold for Ras and Raf. Here, we examined the role of Shoc2 in the spatio-temporal regulation of Ras by using a fluorescence resonance energy transfer (FRET)-based biosensor, together with computational modeling. In epidermal growth factor-stimulated HeLa cells, RNA-mediated Shoc2 knockdown reduced the phosphorylation of MEK and ERK with half-maximal inhibition, but not the activation of Ras. For the live monitoring of Ras binding to Raf, we utilized a FRET biosensor wherein Ras and the Ras-binding domain of Raf were connected tandemly and sandwiched with acceptor and donor fluorescent proteins for the FRET measurement. With this biosensor, we found that Shoc2 was required for the rapid interaction of Ras with Raf upon epidermal growth factor stimulation. To decipher the molecular mechanisms underlying the kinetics, we developed two computational models that might account for the action of Shoc2 in the Ras-ERK signaling. One of these models, the Shoc2 accelerator model, provided a reasonable explanation of the experimental observations. In this Shoc2 accelerator model, Shoc2 accelerated both the association and dissociation of Ras-Raf interaction. We propose that Shoc2 regulates the spatio-temporal patterns of the Ras-ERK signaling pathway primarily by accelerating the Ras-Raf interaction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20051520</pmid><doi>10.1074/jbc.M109.053975</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-03, Vol.285 (10), p.7818-7826
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2844225
source ScienceDirect (Online service); PubMed Central
subjects Animals
Biosensing Techniques
Cell/Mitogens
Computer Simulation
Enzyme Activation
Epidermal Growth Factor - metabolism
Extracellular Signal-Regulated MAP Kinases - genetics
Extracellular Signal-Regulated MAP Kinases - metabolism
Fluorescence Resonance Energy Transfer
Fluorescence Resonance Energy Transfer - methods
HeLa Cells
Humans
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Methods/Computer Modeling
Methods/Microscopic Imaging
Mitogen-Activated Protein Kinase Kinases - genetics
Mitogen-Activated Protein Kinase Kinases - metabolism
Phosphorylation
Phosphorylation/Kinases/Serine-Threonine
Protein Binding
Raf
raf Kinases - genetics
raf Kinases - metabolism
Ras
ras Proteins - genetics
ras Proteins - metabolism
RNA Interference
Shoc2/SUR-8
Signal Transduction
Signal Transduction - physiology
Signal Transduction/Protein Kinases/MAP
title The Scaffold Protein Shoc2/SUR-8 Accelerates the Interaction of Ras and Raf
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Scaffold%20Protein%20Shoc2/SUR-8%20Accelerates%20the%20Interaction%20of%20Ras%20and%20Raf&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Matsunaga-Udagawa,%20Rie&rft.date=2010-03-05&rft.volume=285&rft.issue=10&rft.spage=7818&rft.epage=7826&rft.pages=7818-7826&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.053975&rft_dat=%3Cproquest_pubme%3E733690202%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-3c0483ffd6519d0471cf968f1f097dc39c5a33be2f7670fea02e6fcab0d8be513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733690202&rft_id=info:pmid/20051520&rfr_iscdi=true