Loading…
Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons
The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified that modify the gating properties of VGSCs. Using...
Saved in:
Published in: | The Journal of pharmacology and experimental therapeutics 2008-08, Vol.326 (2), p.604-613 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-7c4e0eee83ab490edc7269dd80afa2f49a443cb87a0cfe85c2f77294347a36a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-7c4e0eee83ab490edc7269dd80afa2f49a443cb87a0cfe85c2f77294347a36a63 |
container_end_page | 613 |
container_issue | 2 |
container_start_page | 604 |
container_title | The Journal of pharmacology and experimental therapeutics |
container_volume | 326 |
creator | Cao, Zhengyu George, Joju Gerwick, William H Baden, Daniel G Rainier, Jon D Murray, Thomas F |
description | The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible
for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified
that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have compared the ability
of VGSC gating modifiers to evoke Na + influx. Intracellular sodium concentration ([Na + ] i ) was monitored using the Na + -sensitive fluorescent dye, sodium-binding benzofuran isophthalate. All sodium channel gating modifier compounds tested produced
a rapid and concentration-dependent elevation in neuronal [Na + ] i . The increment in [Na + ] i exceeded 40 mM at high concentrations of brevetoxins, batrachotoxin, and the novel lipopeptide, antillatoxin. The maximal
increments in neuronal [Na + ] i produced by neurotoxin site 2 alkaloids, veratridine and aconitine, and the pyrethroid deltamethrin were somewhat lower with
maximal [Na + ] i increments of less than 40 mM. The rank order of efficacy of sodium channel gating modifiers was brevetoxin (PbTx)-1 > PbTx-desoxydioxolane
> batrachotoxin > antillatoxin > PbTx-2 = PbTx-3 > PbTx-3α-naphthoate > veratridine > deltamethrin > aconitine > gambierol.
These data demonstrate that the ability of sodium channel gating modifiers to act as partial agonists is shared by compounds
acting at both neurotoxin sites 2 and 5. The concentration-dependent increases in [Na + ] i produced by PbTx-2, antillatoxin, veratridine, deltamethrin, aconitine, and gambierol were all abrogated by tetrodotoxin,
indicating that VGSCs represent the sole pathway of Na + entry after exposure to gating modifier neurotoxins. |
doi_str_mv | 10.1124/jpet.108.138230 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2852114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18448863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-7c4e0eee83ab490edc7269dd80afa2f49a443cb87a0cfe85c2f77294347a36a63</originalsourceid><addsrcrecordid>eNpVkM1PAjEQxRujEUTP3kxP3hb6xW65mBiiSIJ6AA-emtJtoWRpN91dhf_e4hI_TjPTee9N8wPgGqM-xoQNNqWu-xjxPqacUHQCunhIcIIwoqegixAhCR2mww64qKoNQpixlJ6DDuaMcZ7SLnifOlM02ikNvYEzW9o8mfuiWRYaTmRt3Qo--9waqwNc-J11FfQOzuNTs4Xf3h20Dr5or3yorZJF7JvgXXUJzowsKn11rD3w9viwGD8ls9fJdHw_S1T8Qp1kimmkteZULtkI6VxlJB3lOUfSSGLYSDJG1ZJnEimj-VARk2VkxCjLJE1lSnvgrs0tm-U22rWrgyxEGexWhr3w0or_G2fXYuU_BOERFWYxYNAGqOCrKmjz48VIHCiLA-U4cNFSjo6bvyd_9UesUXDbCtZ2tf60QYtyLcNWKl_41V5QkgoiUsToF2K3iLc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons</title><source>Freely Accessible Journals</source><creator>Cao, Zhengyu ; George, Joju ; Gerwick, William H ; Baden, Daniel G ; Rainier, Jon D ; Murray, Thomas F</creator><creatorcontrib>Cao, Zhengyu ; George, Joju ; Gerwick, William H ; Baden, Daniel G ; Rainier, Jon D ; Murray, Thomas F</creatorcontrib><description>The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible
for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified
that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have compared the ability
of VGSC gating modifiers to evoke Na + influx. Intracellular sodium concentration ([Na + ] i ) was monitored using the Na + -sensitive fluorescent dye, sodium-binding benzofuran isophthalate. All sodium channel gating modifier compounds tested produced
a rapid and concentration-dependent elevation in neuronal [Na + ] i . The increment in [Na + ] i exceeded 40 mM at high concentrations of brevetoxins, batrachotoxin, and the novel lipopeptide, antillatoxin. The maximal
increments in neuronal [Na + ] i produced by neurotoxin site 2 alkaloids, veratridine and aconitine, and the pyrethroid deltamethrin were somewhat lower with
maximal [Na + ] i increments of less than 40 mM. The rank order of efficacy of sodium channel gating modifiers was brevetoxin (PbTx)-1 > PbTx-desoxydioxolane
> batrachotoxin > antillatoxin > PbTx-2 = PbTx-3 > PbTx-3α-naphthoate > veratridine > deltamethrin > aconitine > gambierol.
These data demonstrate that the ability of sodium channel gating modifiers to act as partial agonists is shared by compounds
acting at both neurotoxin sites 2 and 5. The concentration-dependent increases in [Na + ] i produced by PbTx-2, antillatoxin, veratridine, deltamethrin, aconitine, and gambierol were all abrogated by tetrodotoxin,
indicating that VGSCs represent the sole pathway of Na + entry after exposure to gating modifier neurotoxins.</description><identifier>ISSN: 0022-3565</identifier><identifier>EISSN: 1521-0103</identifier><identifier>DOI: 10.1124/jpet.108.138230</identifier><identifier>PMID: 18448863</identifier><language>eng</language><publisher>United States: American Society for Pharmacology and Experimental Therapeutics</publisher><subject>Animals ; Cells, Cultured ; Dose-Response Relationship, Drug ; Ion Channel Gating - drug effects ; Lipids - chemistry ; Mice ; Molecular Structure ; Neocortex - cytology ; Neocortex - drug effects ; Neocortex - metabolism ; Neocortex - physiology ; Neurons - drug effects ; Neurons - metabolism ; Neurons - physiology ; Neurotoxins - chemistry ; Neurotoxins - pharmacology ; Sodium - metabolism ; Sodium Channels - metabolism ; Solubility</subject><ispartof>The Journal of pharmacology and experimental therapeutics, 2008-08, Vol.326 (2), p.604-613</ispartof><rights>Copyright 2008 by the American Society for Pharmacology and Experimental Therapeutics. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-7c4e0eee83ab490edc7269dd80afa2f49a443cb87a0cfe85c2f77294347a36a63</citedby><cites>FETCH-LOGICAL-c488t-7c4e0eee83ab490edc7269dd80afa2f49a443cb87a0cfe85c2f77294347a36a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18448863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Zhengyu</creatorcontrib><creatorcontrib>George, Joju</creatorcontrib><creatorcontrib>Gerwick, William H</creatorcontrib><creatorcontrib>Baden, Daniel G</creatorcontrib><creatorcontrib>Rainier, Jon D</creatorcontrib><creatorcontrib>Murray, Thomas F</creatorcontrib><title>Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons</title><title>The Journal of pharmacology and experimental therapeutics</title><addtitle>J Pharmacol Exp Ther</addtitle><description>The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible
for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified
that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have compared the ability
of VGSC gating modifiers to evoke Na + influx. Intracellular sodium concentration ([Na + ] i ) was monitored using the Na + -sensitive fluorescent dye, sodium-binding benzofuran isophthalate. All sodium channel gating modifier compounds tested produced
a rapid and concentration-dependent elevation in neuronal [Na + ] i . The increment in [Na + ] i exceeded 40 mM at high concentrations of brevetoxins, batrachotoxin, and the novel lipopeptide, antillatoxin. The maximal
increments in neuronal [Na + ] i produced by neurotoxin site 2 alkaloids, veratridine and aconitine, and the pyrethroid deltamethrin were somewhat lower with
maximal [Na + ] i increments of less than 40 mM. The rank order of efficacy of sodium channel gating modifiers was brevetoxin (PbTx)-1 > PbTx-desoxydioxolane
> batrachotoxin > antillatoxin > PbTx-2 = PbTx-3 > PbTx-3α-naphthoate > veratridine > deltamethrin > aconitine > gambierol.
These data demonstrate that the ability of sodium channel gating modifiers to act as partial agonists is shared by compounds
acting at both neurotoxin sites 2 and 5. The concentration-dependent increases in [Na + ] i produced by PbTx-2, antillatoxin, veratridine, deltamethrin, aconitine, and gambierol were all abrogated by tetrodotoxin,
indicating that VGSCs represent the sole pathway of Na + entry after exposure to gating modifier neurotoxins.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ion Channel Gating - drug effects</subject><subject>Lipids - chemistry</subject><subject>Mice</subject><subject>Molecular Structure</subject><subject>Neocortex - cytology</subject><subject>Neocortex - drug effects</subject><subject>Neocortex - metabolism</subject><subject>Neocortex - physiology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Neurotoxins - chemistry</subject><subject>Neurotoxins - pharmacology</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - metabolism</subject><subject>Solubility</subject><issn>0022-3565</issn><issn>1521-0103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpVkM1PAjEQxRujEUTP3kxP3hb6xW65mBiiSIJ6AA-emtJtoWRpN91dhf_e4hI_TjPTee9N8wPgGqM-xoQNNqWu-xjxPqacUHQCunhIcIIwoqegixAhCR2mww64qKoNQpixlJ6DDuaMcZ7SLnifOlM02ikNvYEzW9o8mfuiWRYaTmRt3Qo--9waqwNc-J11FfQOzuNTs4Xf3h20Dr5or3yorZJF7JvgXXUJzowsKn11rD3w9viwGD8ls9fJdHw_S1T8Qp1kimmkteZULtkI6VxlJB3lOUfSSGLYSDJG1ZJnEimj-VARk2VkxCjLJE1lSnvgrs0tm-U22rWrgyxEGexWhr3w0or_G2fXYuU_BOERFWYxYNAGqOCrKmjz48VIHCiLA-U4cNFSjo6bvyd_9UesUXDbCtZ2tf60QYtyLcNWKl_41V5QkgoiUsToF2K3iLc</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Cao, Zhengyu</creator><creator>George, Joju</creator><creator>Gerwick, William H</creator><creator>Baden, Daniel G</creator><creator>Rainier, Jon D</creator><creator>Murray, Thomas F</creator><general>American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons</title><author>Cao, Zhengyu ; George, Joju ; Gerwick, William H ; Baden, Daniel G ; Rainier, Jon D ; Murray, Thomas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-7c4e0eee83ab490edc7269dd80afa2f49a443cb87a0cfe85c2f77294347a36a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ion Channel Gating - drug effects</topic><topic>Lipids - chemistry</topic><topic>Mice</topic><topic>Molecular Structure</topic><topic>Neocortex - cytology</topic><topic>Neocortex - drug effects</topic><topic>Neocortex - metabolism</topic><topic>Neocortex - physiology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Neurotoxins - chemistry</topic><topic>Neurotoxins - pharmacology</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - metabolism</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zhengyu</creatorcontrib><creatorcontrib>George, Joju</creatorcontrib><creatorcontrib>Gerwick, William H</creatorcontrib><creatorcontrib>Baden, Daniel G</creatorcontrib><creatorcontrib>Rainier, Jon D</creatorcontrib><creatorcontrib>Murray, Thomas F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of pharmacology and experimental therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zhengyu</au><au>George, Joju</au><au>Gerwick, William H</au><au>Baden, Daniel G</au><au>Rainier, Jon D</au><au>Murray, Thomas F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons</atitle><jtitle>The Journal of pharmacology and experimental therapeutics</jtitle><addtitle>J Pharmacol Exp Ther</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>326</volume><issue>2</issue><spage>604</spage><epage>613</epage><pages>604-613</pages><issn>0022-3565</issn><eissn>1521-0103</eissn><abstract>The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible
for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified
that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have compared the ability
of VGSC gating modifiers to evoke Na + influx. Intracellular sodium concentration ([Na + ] i ) was monitored using the Na + -sensitive fluorescent dye, sodium-binding benzofuran isophthalate. All sodium channel gating modifier compounds tested produced
a rapid and concentration-dependent elevation in neuronal [Na + ] i . The increment in [Na + ] i exceeded 40 mM at high concentrations of brevetoxins, batrachotoxin, and the novel lipopeptide, antillatoxin. The maximal
increments in neuronal [Na + ] i produced by neurotoxin site 2 alkaloids, veratridine and aconitine, and the pyrethroid deltamethrin were somewhat lower with
maximal [Na + ] i increments of less than 40 mM. The rank order of efficacy of sodium channel gating modifiers was brevetoxin (PbTx)-1 > PbTx-desoxydioxolane
> batrachotoxin > antillatoxin > PbTx-2 = PbTx-3 > PbTx-3α-naphthoate > veratridine > deltamethrin > aconitine > gambierol.
These data demonstrate that the ability of sodium channel gating modifiers to act as partial agonists is shared by compounds
acting at both neurotoxin sites 2 and 5. The concentration-dependent increases in [Na + ] i produced by PbTx-2, antillatoxin, veratridine, deltamethrin, aconitine, and gambierol were all abrogated by tetrodotoxin,
indicating that VGSCs represent the sole pathway of Na + entry after exposure to gating modifier neurotoxins.</abstract><cop>United States</cop><pub>American Society for Pharmacology and Experimental Therapeutics</pub><pmid>18448863</pmid><doi>10.1124/jpet.108.138230</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3565 |
ispartof | The Journal of pharmacology and experimental therapeutics, 2008-08, Vol.326 (2), p.604-613 |
issn | 0022-3565 1521-0103 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2852114 |
source | Freely Accessible Journals |
subjects | Animals Cells, Cultured Dose-Response Relationship, Drug Ion Channel Gating - drug effects Lipids - chemistry Mice Molecular Structure Neocortex - cytology Neocortex - drug effects Neocortex - metabolism Neocortex - physiology Neurons - drug effects Neurons - metabolism Neurons - physiology Neurotoxins - chemistry Neurotoxins - pharmacology Sodium - metabolism Sodium Channels - metabolism Solubility |
title | Influence of Lipid-Soluble Gating Modifier Toxins on Sodium Influx in Neocortical Neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Lipid-Soluble%20Gating%20Modifier%20Toxins%20on%20Sodium%20Influx%20in%20Neocortical%20Neurons&rft.jtitle=The%20Journal%20of%20pharmacology%20and%20experimental%20therapeutics&rft.au=Cao,%20Zhengyu&rft.date=2008-08-01&rft.volume=326&rft.issue=2&rft.spage=604&rft.epage=613&rft.pages=604-613&rft.issn=0022-3565&rft.eissn=1521-0103&rft_id=info:doi/10.1124/jpet.108.138230&rft_dat=%3Cpubmed_cross%3E18448863%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-7c4e0eee83ab490edc7269dd80afa2f49a443cb87a0cfe85c2f77294347a36a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/18448863&rfr_iscdi=true |