Loading…

Intracellular Mycobacterium avium Intersect Transferrin in the Rab11+ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway

Iron is an essential nutrient for microbes, and many pathogenic bacteria depend on siderophores to obtain iron. The mammalian innate immunity protein lipocalin 2 (Lcn2; also known as neutrophil gelatinase-associated lipocalin, 24p3, or siderocalin) binds the siderophore carboxymycobactin, an essenti...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of infectious diseases 2010-03, Vol.201 (5), p.783-792
Main Authors: Halaas, Øyvind, Steigedal, Magnus, Haug, Markus, Awuh, Jane A., Ryan, Liv, Brech, Andreas, Sato, Shintaro, Husebye, Harald, Cangelosi, Gerard A., Akira, Shizuo, Strong, Roland K., Espevik, Terje, Flo, Trude H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-4be7ed78adf5ea121c15cd76db75230f176800a1341567e47f6ab46f0f6601493
cites
container_end_page 792
container_issue 5
container_start_page 783
container_title The Journal of infectious diseases
container_volume 201
creator Halaas, Øyvind
Steigedal, Magnus
Haug, Markus
Awuh, Jane A.
Ryan, Liv
Brech, Andreas
Sato, Shintaro
Husebye, Harald
Cangelosi, Gerard A.
Akira, Shizuo
Strong, Roland K.
Espevik, Terje
Flo, Trude H.
description Iron is an essential nutrient for microbes, and many pathogenic bacteria depend on siderophores to obtain iron. The mammalian innate immunity protein lipocalin 2 (Lcn2; also known as neutrophil gelatinase-associated lipocalin, 24p3, or siderocalin) binds the siderophore carboxymycobactin, an essential component of the iron acquisition apparatus of mycobacteria. Here we show that Lcn2 suppressed growth of Mycobacterium avium in culture, and M. avium induced Lcn2 production from mouse macrophages. Lcn2 also had elevated levels and initially limited the growth of M. avium in the blood of infected mice but did not impede growth in tissues and during long-term infections. M. avium is an intracellular pathogen. Subcellular imaging of infected macrophages revealed that Lcn2 trafficked to lysosomes separate from M. avium, whereas transferrin was efficiently transported to the mycobacteria. Thus, mycobacteria seem to reside in the Rab11+ endocytic recycling pathway, thereby retaining access to nutrition and avoiding endocytosed immunoproteins like Lcn2.
doi_str_mv 10.1086/650493
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2862295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27794492</jstor_id><oup_id>10.1086/650493</oup_id><sourcerecordid>27794492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-4be7ed78adf5ea121c15cd76db75230f176800a1341567e47f6ab46f0f6601493</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEokOBNwCZBbBAAf_FTjZIpbS00vCjqgjExnIcu-M2iQfbGci78LA4ZDqFBZJlL853z_U9N8seIvgSwZK9YgWkFbmVLVDBSc4YIrezBYQY56isqr3sXgiXEEJKGL-b7WGIMKKkWGS_TvvopdJtO7TSg_ejcrVUUXs7dEBupjsR2getIjj3sg9Ge297kE5caXAma4RegDOtRtXa_gIc9Y1TY7QKfJJx9UOOQPYNONg424ClXTslEwbw5GWMVVdTTXR_vJZjcMF1sr0uvZ_dMbIN-sH23c8-Hx-dH57ky4_vTg8PlrmitIo5rTXXDS9lYwot02QKFarhrKl5gQk0iLMSQokIRQXjmnLDZE2ZgYYxiFJs-9nr2Xc91J1ulJ4yacXa2076UThpxb9Kb1fiwm0ELhnGVZEMnm8NvPs-6BBFZ8MUquy1G4LghFSUMTqRz2ZSeReC12bXBUExbVLMm0zg47__tMOuV5eAp1tAhhSqSbtRNtxwmOI0NUzck5lzw_r_zR7NzGWIzt94cF6lhHHS81m3IeqfO136K8E44YU4-fpNfKH4DT-Gb8UH8hsLu8qW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733946645</pqid></control><display><type>article</type><title>Intracellular Mycobacterium avium Intersect Transferrin in the Rab11+ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Halaas, Øyvind ; Steigedal, Magnus ; Haug, Markus ; Awuh, Jane A. ; Ryan, Liv ; Brech, Andreas ; Sato, Shintaro ; Husebye, Harald ; Cangelosi, Gerard A. ; Akira, Shizuo ; Strong, Roland K. ; Espevik, Terje ; Flo, Trude H.</creator><creatorcontrib>Halaas, Øyvind ; Steigedal, Magnus ; Haug, Markus ; Awuh, Jane A. ; Ryan, Liv ; Brech, Andreas ; Sato, Shintaro ; Husebye, Harald ; Cangelosi, Gerard A. ; Akira, Shizuo ; Strong, Roland K. ; Espevik, Terje ; Flo, Trude H.</creatorcontrib><description>Iron is an essential nutrient for microbes, and many pathogenic bacteria depend on siderophores to obtain iron. The mammalian innate immunity protein lipocalin 2 (Lcn2; also known as neutrophil gelatinase-associated lipocalin, 24p3, or siderocalin) binds the siderophore carboxymycobactin, an essential component of the iron acquisition apparatus of mycobacteria. Here we show that Lcn2 suppressed growth of Mycobacterium avium in culture, and M. avium induced Lcn2 production from mouse macrophages. Lcn2 also had elevated levels and initially limited the growth of M. avium in the blood of infected mice but did not impede growth in tissues and during long-term infections. M. avium is an intracellular pathogen. Subcellular imaging of infected macrophages revealed that Lcn2 trafficked to lysosomes separate from M. avium, whereas transferrin was efficiently transported to the mycobacteria. Thus, mycobacteria seem to reside in the Rab11+ endocytic recycling pathway, thereby retaining access to nutrition and avoiding endocytosed immunoproteins like Lcn2.</description><identifier>ISSN: 0022-1899</identifier><identifier>EISSN: 1573-6613</identifier><identifier>EISSN: 1537-6613</identifier><identifier>DOI: 10.1086/650493</identifier><identifier>PMID: 20121435</identifier><identifier>CODEN: JIDIAQ</identifier><language>eng</language><publisher>Oxford: The University of Chicago Press</publisher><subject>Acute-Phase Proteins - immunology ; Acute-Phase Proteins - metabolism ; Animals ; Bacteria ; Bacteriology ; Biological and medical sciences ; Blood - microbiology ; Colony Count, Microbial ; Endosomes ; Fundamental and applied biological sciences. Psychology ; Infections ; Infectious diseases ; Iron ; Lipocalin-2 ; Lipocalins - blood ; Lipocalins - immunology ; Lipocalins - metabolism ; Liver - microbiology ; Lysosomes ; Lysosomes - chemistry ; Lysosomes - metabolism ; Lysosomes - microbiology ; Macrophages ; Macrophages - immunology ; Macrophages - microbiology ; Medical sciences ; Mice ; Mice, Inbred C57BL ; Microbiology ; Miscellaneous ; Mycobacterium avium - growth &amp; development ; Mycobacterium avium - immunology ; Mycobacterium avium - metabolism ; Mycobacterium avium - pathogenicity ; Mycobacterium tuberculosis ; Neutrophils ; Oncogene Proteins - blood ; Oncogene Proteins - immunology ; Oncogene Proteins - metabolism ; Phagosomes ; rab GTP-Binding Proteins - metabolism ; Spleen - microbiology ; Transferrin - metabolism ; Transferrins ; Tuberculosis - immunology ; Tuberculosis - microbiology</subject><ispartof>The Journal of infectious diseases, 2010-03, Vol.201 (5), p.783-792</ispartof><rights>2010 Infectious Diseases Society of America</rights><rights>2010 by the Infectious Diseases Society of America 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-4be7ed78adf5ea121c15cd76db75230f176800a1341567e47f6ab46f0f6601493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22428000$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20121435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halaas, Øyvind</creatorcontrib><creatorcontrib>Steigedal, Magnus</creatorcontrib><creatorcontrib>Haug, Markus</creatorcontrib><creatorcontrib>Awuh, Jane A.</creatorcontrib><creatorcontrib>Ryan, Liv</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>Sato, Shintaro</creatorcontrib><creatorcontrib>Husebye, Harald</creatorcontrib><creatorcontrib>Cangelosi, Gerard A.</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Strong, Roland K.</creatorcontrib><creatorcontrib>Espevik, Terje</creatorcontrib><creatorcontrib>Flo, Trude H.</creatorcontrib><title>Intracellular Mycobacterium avium Intersect Transferrin in the Rab11+ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway</title><title>The Journal of infectious diseases</title><addtitle>The Journal of Infectious Diseases</addtitle><addtitle>The Journal of Infectious Diseases</addtitle><description>Iron is an essential nutrient for microbes, and many pathogenic bacteria depend on siderophores to obtain iron. The mammalian innate immunity protein lipocalin 2 (Lcn2; also known as neutrophil gelatinase-associated lipocalin, 24p3, or siderocalin) binds the siderophore carboxymycobactin, an essential component of the iron acquisition apparatus of mycobacteria. Here we show that Lcn2 suppressed growth of Mycobacterium avium in culture, and M. avium induced Lcn2 production from mouse macrophages. Lcn2 also had elevated levels and initially limited the growth of M. avium in the blood of infected mice but did not impede growth in tissues and during long-term infections. M. avium is an intracellular pathogen. Subcellular imaging of infected macrophages revealed that Lcn2 trafficked to lysosomes separate from M. avium, whereas transferrin was efficiently transported to the mycobacteria. Thus, mycobacteria seem to reside in the Rab11+ endocytic recycling pathway, thereby retaining access to nutrition and avoiding endocytosed immunoproteins like Lcn2.</description><subject>Acute-Phase Proteins - immunology</subject><subject>Acute-Phase Proteins - metabolism</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Blood - microbiology</subject><subject>Colony Count, Microbial</subject><subject>Endosomes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Iron</subject><subject>Lipocalin-2</subject><subject>Lipocalins - blood</subject><subject>Lipocalins - immunology</subject><subject>Lipocalins - metabolism</subject><subject>Liver - microbiology</subject><subject>Lysosomes</subject><subject>Lysosomes - chemistry</subject><subject>Lysosomes - metabolism</subject><subject>Lysosomes - microbiology</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - microbiology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Mycobacterium avium - growth &amp; development</subject><subject>Mycobacterium avium - immunology</subject><subject>Mycobacterium avium - metabolism</subject><subject>Mycobacterium avium - pathogenicity</subject><subject>Mycobacterium tuberculosis</subject><subject>Neutrophils</subject><subject>Oncogene Proteins - blood</subject><subject>Oncogene Proteins - immunology</subject><subject>Oncogene Proteins - metabolism</subject><subject>Phagosomes</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Spleen - microbiology</subject><subject>Transferrin - metabolism</subject><subject>Transferrins</subject><subject>Tuberculosis - immunology</subject><subject>Tuberculosis - microbiology</subject><issn>0022-1899</issn><issn>1573-6613</issn><issn>1537-6613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhSMEokOBNwCZBbBAAf_FTjZIpbS00vCjqgjExnIcu-M2iQfbGci78LA4ZDqFBZJlL853z_U9N8seIvgSwZK9YgWkFbmVLVDBSc4YIrezBYQY56isqr3sXgiXEEJKGL-b7WGIMKKkWGS_TvvopdJtO7TSg_ejcrVUUXs7dEBupjsR2getIjj3sg9Ge297kE5caXAma4RegDOtRtXa_gIc9Y1TY7QKfJJx9UOOQPYNONg424ClXTslEwbw5GWMVVdTTXR_vJZjcMF1sr0uvZ_dMbIN-sH23c8-Hx-dH57ky4_vTg8PlrmitIo5rTXXDS9lYwot02QKFarhrKl5gQk0iLMSQokIRQXjmnLDZE2ZgYYxiFJs-9nr2Xc91J1ulJ4yacXa2076UThpxb9Kb1fiwm0ELhnGVZEMnm8NvPs-6BBFZ8MUquy1G4LghFSUMTqRz2ZSeReC12bXBUExbVLMm0zg47__tMOuV5eAp1tAhhSqSbtRNtxwmOI0NUzck5lzw_r_zR7NzGWIzt94cF6lhHHS81m3IeqfO136K8E44YU4-fpNfKH4DT-Gb8UH8hsLu8qW</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Halaas, Øyvind</creator><creator>Steigedal, Magnus</creator><creator>Haug, Markus</creator><creator>Awuh, Jane A.</creator><creator>Ryan, Liv</creator><creator>Brech, Andreas</creator><creator>Sato, Shintaro</creator><creator>Husebye, Harald</creator><creator>Cangelosi, Gerard A.</creator><creator>Akira, Shizuo</creator><creator>Strong, Roland K.</creator><creator>Espevik, Terje</creator><creator>Flo, Trude H.</creator><general>The University of Chicago Press</general><general>University of Chicago Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100301</creationdate><title>Intracellular Mycobacterium avium Intersect Transferrin in the Rab11+ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway</title><author>Halaas, Øyvind ; Steigedal, Magnus ; Haug, Markus ; Awuh, Jane A. ; Ryan, Liv ; Brech, Andreas ; Sato, Shintaro ; Husebye, Harald ; Cangelosi, Gerard A. ; Akira, Shizuo ; Strong, Roland K. ; Espevik, Terje ; Flo, Trude H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-4be7ed78adf5ea121c15cd76db75230f176800a1341567e47f6ab46f0f6601493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acute-Phase Proteins - immunology</topic><topic>Acute-Phase Proteins - metabolism</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Blood - microbiology</topic><topic>Colony Count, Microbial</topic><topic>Endosomes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Iron</topic><topic>Lipocalin-2</topic><topic>Lipocalins - blood</topic><topic>Lipocalins - immunology</topic><topic>Lipocalins - metabolism</topic><topic>Liver - microbiology</topic><topic>Lysosomes</topic><topic>Lysosomes - chemistry</topic><topic>Lysosomes - metabolism</topic><topic>Lysosomes - microbiology</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - microbiology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Mycobacterium avium - growth &amp; development</topic><topic>Mycobacterium avium - immunology</topic><topic>Mycobacterium avium - metabolism</topic><topic>Mycobacterium avium - pathogenicity</topic><topic>Mycobacterium tuberculosis</topic><topic>Neutrophils</topic><topic>Oncogene Proteins - blood</topic><topic>Oncogene Proteins - immunology</topic><topic>Oncogene Proteins - metabolism</topic><topic>Phagosomes</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Spleen - microbiology</topic><topic>Transferrin - metabolism</topic><topic>Transferrins</topic><topic>Tuberculosis - immunology</topic><topic>Tuberculosis - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halaas, Øyvind</creatorcontrib><creatorcontrib>Steigedal, Magnus</creatorcontrib><creatorcontrib>Haug, Markus</creatorcontrib><creatorcontrib>Awuh, Jane A.</creatorcontrib><creatorcontrib>Ryan, Liv</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>Sato, Shintaro</creatorcontrib><creatorcontrib>Husebye, Harald</creatorcontrib><creatorcontrib>Cangelosi, Gerard A.</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Strong, Roland K.</creatorcontrib><creatorcontrib>Espevik, Terje</creatorcontrib><creatorcontrib>Flo, Trude H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halaas, Øyvind</au><au>Steigedal, Magnus</au><au>Haug, Markus</au><au>Awuh, Jane A.</au><au>Ryan, Liv</au><au>Brech, Andreas</au><au>Sato, Shintaro</au><au>Husebye, Harald</au><au>Cangelosi, Gerard A.</au><au>Akira, Shizuo</au><au>Strong, Roland K.</au><au>Espevik, Terje</au><au>Flo, Trude H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracellular Mycobacterium avium Intersect Transferrin in the Rab11+ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway</atitle><jtitle>The Journal of infectious diseases</jtitle><stitle>The Journal of Infectious Diseases</stitle><addtitle>The Journal of Infectious Diseases</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>201</volume><issue>5</issue><spage>783</spage><epage>792</epage><pages>783-792</pages><issn>0022-1899</issn><eissn>1573-6613</eissn><eissn>1537-6613</eissn><coden>JIDIAQ</coden><abstract>Iron is an essential nutrient for microbes, and many pathogenic bacteria depend on siderophores to obtain iron. The mammalian innate immunity protein lipocalin 2 (Lcn2; also known as neutrophil gelatinase-associated lipocalin, 24p3, or siderocalin) binds the siderophore carboxymycobactin, an essential component of the iron acquisition apparatus of mycobacteria. Here we show that Lcn2 suppressed growth of Mycobacterium avium in culture, and M. avium induced Lcn2 production from mouse macrophages. Lcn2 also had elevated levels and initially limited the growth of M. avium in the blood of infected mice but did not impede growth in tissues and during long-term infections. M. avium is an intracellular pathogen. Subcellular imaging of infected macrophages revealed that Lcn2 trafficked to lysosomes separate from M. avium, whereas transferrin was efficiently transported to the mycobacteria. Thus, mycobacteria seem to reside in the Rab11+ endocytic recycling pathway, thereby retaining access to nutrition and avoiding endocytosed immunoproteins like Lcn2.</abstract><cop>Oxford</cop><pub>The University of Chicago Press</pub><pmid>20121435</pmid><doi>10.1086/650493</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1899
ispartof The Journal of infectious diseases, 2010-03, Vol.201 (5), p.783-792
issn 0022-1899
1573-6613
1537-6613
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2862295
source Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
subjects Acute-Phase Proteins - immunology
Acute-Phase Proteins - metabolism
Animals
Bacteria
Bacteriology
Biological and medical sciences
Blood - microbiology
Colony Count, Microbial
Endosomes
Fundamental and applied biological sciences. Psychology
Infections
Infectious diseases
Iron
Lipocalin-2
Lipocalins - blood
Lipocalins - immunology
Lipocalins - metabolism
Liver - microbiology
Lysosomes
Lysosomes - chemistry
Lysosomes - metabolism
Lysosomes - microbiology
Macrophages
Macrophages - immunology
Macrophages - microbiology
Medical sciences
Mice
Mice, Inbred C57BL
Microbiology
Miscellaneous
Mycobacterium avium - growth & development
Mycobacterium avium - immunology
Mycobacterium avium - metabolism
Mycobacterium avium - pathogenicity
Mycobacterium tuberculosis
Neutrophils
Oncogene Proteins - blood
Oncogene Proteins - immunology
Oncogene Proteins - metabolism
Phagosomes
rab GTP-Binding Proteins - metabolism
Spleen - microbiology
Transferrin - metabolism
Transferrins
Tuberculosis - immunology
Tuberculosis - microbiology
title Intracellular Mycobacterium avium Intersect Transferrin in the Rab11+ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracellular%20Mycobacterium%20avium%20Intersect%20Transferrin%20in%20the%20Rab11+%20Recycling%20Endocytic%20Pathway%20and%20Avoid%20Lipocalin%202%20Trafficking%20to%20the%20Lysosomal%20Pathway&rft.jtitle=The%20Journal%20of%20infectious%20diseases&rft.au=Halaas,%20%C3%98yvind&rft.date=2010-03-01&rft.volume=201&rft.issue=5&rft.spage=783&rft.epage=792&rft.pages=783-792&rft.issn=0022-1899&rft.eissn=1573-6613&rft.coden=JIDIAQ&rft_id=info:doi/10.1086/650493&rft_dat=%3Cjstor_pubme%3E27794492%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-4be7ed78adf5ea121c15cd76db75230f176800a1341567e47f6ab46f0f6601493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733946645&rft_id=info:pmid/20121435&rft_jstor_id=27794492&rft_oup_id=10.1086/650493&rfr_iscdi=true