Loading…

Expression of Fractalkine Receptor CX3CR1 on Cochlear Macrophages Influences Survival of Hair Cells Following Ototoxic Injury

The role of innate immunity and macrophage recruitment to the inner ear after hair cell injury is a subject where little is known. In this paper, we demonstrate recruitment of monocytes and macrophages to the inner ear after kanamycin. We also examined the effect of fractalkine receptor (CX3CR1) del...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Association for Research in Otolaryngology 2010-06, Vol.11 (2), p.223-234
Main Authors: Sato, Eisuke, Shick, H. Elizabeth, Ransohoff, Richard M., Hirose, Keiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of innate immunity and macrophage recruitment to the inner ear after hair cell injury is a subject where little is known. In this paper, we demonstrate recruitment of monocytes and macrophages to the inner ear after kanamycin. We also examined the effect of fractalkine receptor (CX3CR1) deletion in kanamycin ototoxicity. We observed more functional and structural damage in CX3CR1 null mice compared to wild-type and heterozygous littermates. In order to determine if increased susceptibility to kanamycin resulted from CX3CR1 deletion from cochlear leukocytes, we created bone marrow chimeras by transplanting CX3CR1-null bone marrow into wild-type mice whose native bone marrow was ablated by lethal irradiation. These mice were then treated with kanamycin sulfate. Auditory brainstem responses (ABR), hair cell counts, and numbers of macrophages recruited to the cochlea were recorded in irradiated mice that received either wild-type, CX3CR1 heterozygous, or CX3CR1 knockout bone marrow. A strong correlation was present between numbers of macrophages and hair cell death in recipients transplanted with CX3CR1 null marrow. No correlation between macrophage number and hair cell loss was present in mice transplanted with wild-type or CX3CR1 heterozygous marrow. We suggest that CX3CR1 plays a role in modulating the detrimental effects of cochlear macrophages after kanamycin ototoxicity. Our data point to the possibility that CX3CR1-deficient cochlear macrophages exacerbate kanamycin ototoxicity while CX3CR1-expressing monocytes do not.
ISSN:1525-3961
1438-7573
DOI:10.1007/s10162-009-0198-3