Loading…

Role of the (p)ppGpp Synthase RSH, a RelA/SpoT Homolog, in Stringent Response and Virulence of Staphylococcus aureus

In most bacteria, nutrient limitations provoke the stringent control through the rapid synthesis of the alarmones pppGpp and ppGpp. Little is known about the stringent control in the human pathogen Staphylococcus aureus, partly due to the essentiality of the major (p)ppGpp synthase/hydrolase enzyme...

Full description

Saved in:
Bibliographic Details
Published in:Infection and Immunity 2010-05, Vol.78 (5), p.1873-1883
Main Authors: Geiger, Tobias, Goerke, Christiane, Fritz, Michaela, Schäfer, Tina, Ohlsen, Knut, Liebeke, Manuel, Lalk, Michael, Wolz, Christiane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In most bacteria, nutrient limitations provoke the stringent control through the rapid synthesis of the alarmones pppGpp and ppGpp. Little is known about the stringent control in the human pathogen Staphylococcus aureus, partly due to the essentiality of the major (p)ppGpp synthase/hydrolase enzyme RSH (RelA/SpoT homolog). Here, we show that mutants defective only in the synthase domain of RSH (rshsyn) are not impaired in growth under nutrient-rich conditions. However, these mutants were more sensitive toward mupirocin and were impaired in survival when essential amino acids were depleted from the medium. RSH is the major enzyme responsible for (p)ppGpp synthesis in response to amino acid deprivation (lack of Leu/Val) or mupirocin treatment. Transcriptional analysis showed that the RSH-dependent stringent control in S. aureus is characterized by repression of genes whose products are predicted to be involved in the translation machinery and by upregulation of genes coding for enzymes involved in amino acid metabolism and transport which are controlled by the repressor CodY. Amino acid starvation also provoked stabilization of the RNAs coding for major virulence regulators, such as SaeRS and SarA, independently of RSH. In an animal model, the rshsyn mutant was shown to be less virulent than the wild type. Virulence could be restored by the introduction of a codY mutation into the rshsyn mutant. These results indicate that stringent conditions are present during infection and that RSH-dependent derepression of CodY-regulated genes is essential for virulence in S. aureus.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.01439-09