Loading…

Fluid-structure interactions of the mitral valve and left heart: Comprehensive strategies, past, present and future

The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caus...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in biomedical engineering 2010-03, Vol.26 (3-4), p.348-380
Main Authors: Einstein, Daniel R., Del Pin, Facundo, Jiao, Xiangmin, Kuprat, Andrew P., Carson, James P., Kunzelman, Karyn S., Cochran, Richard P., Guccione, Julius M., Ratcliffe, Mark B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5460-5dcd3cd64fd8db69e77f05ab4d88d824bd36b8810240fd4c8f6b2ea0c9b483d33
cites cdi_FETCH-LOGICAL-c5460-5dcd3cd64fd8db69e77f05ab4d88d824bd36b8810240fd4c8f6b2ea0c9b483d33
container_end_page 380
container_issue 3-4
container_start_page 348
container_title International journal for numerical methods in biomedical engineering
container_volume 26
creator Einstein, Daniel R.
Del Pin, Facundo
Jiao, Xiangmin
Kuprat, Andrew P.
Carson, James P.
Kunzelman, Karyn S.
Cochran, Richard P.
Guccione, Julius M.
Ratcliffe, Mark B.
description The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, MR can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid‐flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid–structure interaction (FSI) model of the left heart is not trivial; it requires a careful characterization of the in vivo cardiac geometry, the tissue parameterization through inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, the automatic grid‐generation algorithms that are capable of accurately discretizing the cardiac geometry, the innovations in image analysis, the competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this paper, we profile our work toward a comprehensive FSI model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, FSI and validation. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cnm.1280
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2864615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835551452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5460-5dcd3cd64fd8db69e77f05ab4d88d824bd36b8810240fd4c8f6b2ea0c9b483d33</originalsourceid><addsrcrecordid>eNqFks1vFCEYxidGY5vaxL_AcNODU_mG8WBiNraadOtBTRMvhIF3uuh8bIFZ7X8va9dVD1oOQPL8eF5eeKrqMcEnBGP6wo3DCaEa36sOKea4Vg1X9_d71hxUxyl9wWXQpmkUe1gdFE1wwchhlU77Ofg65Ti7PEdAYcwQrcthGhOaOpRXgIaQo-3RxvYbQHb0qIcuoxXYmF-ixTSsI6xgTKGoxchmuAqQnqO1TbnMERKM-ee5bt7WeFQ96Gyf4Hi3HlWfTt98XLytz9-fvVu8Pq-d4BLXwjvPnJe889q3sgGlOixsy73WXlPeeiZbrQmmHHeeO93JloLFrmm5Zp6xo-rVre96bgfwrtyitGHWMQw23pjJBvO3MoaVuZo2hmrJJRHF4OnOIE7XM6RshpAc9L0dYZqTUZxLSomWhXz2X5JoJoQgXNC7UaWk5LyRzd0oplhzXP77N-rilFKEbt8mwWYbE1NiYrYxKeiTP59lD_4KRQHqW-Bb6OHmn0ZmcbHcGe74kDJ83_M2fjVSMSXM5cWZYZcfqF5-XhrMfgApwdcl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020840947</pqid></control><display><type>article</type><title>Fluid-structure interactions of the mitral valve and left heart: Comprehensive strategies, past, present and future</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Einstein, Daniel R. ; Del Pin, Facundo ; Jiao, Xiangmin ; Kuprat, Andrew P. ; Carson, James P. ; Kunzelman, Karyn S. ; Cochran, Richard P. ; Guccione, Julius M. ; Ratcliffe, Mark B.</creator><creatorcontrib>Einstein, Daniel R. ; Del Pin, Facundo ; Jiao, Xiangmin ; Kuprat, Andrew P. ; Carson, James P. ; Kunzelman, Karyn S. ; Cochran, Richard P. ; Guccione, Julius M. ; Ratcliffe, Mark B.</creatorcontrib><description>The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, MR can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid‐flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid–structure interaction (FSI) model of the left heart is not trivial; it requires a careful characterization of the in vivo cardiac geometry, the tissue parameterization through inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, the automatic grid‐generation algorithms that are capable of accurately discretizing the cardiac geometry, the innovations in image analysis, the competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this paper, we profile our work toward a comprehensive FSI model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, FSI and validation. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 2040-7939</identifier><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 2040-7947</identifier><identifier>EISSN: 2040-7947</identifier><identifier>EISSN: 1069-8299</identifier><identifier>DOI: 10.1002/cnm.1280</identifier><identifier>PMID: 20454531</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>biofluid-structure interactions ; Constitutive relationships ; Fluid-structure interaction ; Heart ; imaging-based finite element models ; ischemic mitral regurgitation ; Mathematical models ; Parametrization ; Remodeling ; Stresses ; Valves</subject><ispartof>International journal for numerical methods in biomedical engineering, 2010-03, Vol.26 (3-4), p.348-380</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5460-5dcd3cd64fd8db69e77f05ab4d88d824bd36b8810240fd4c8f6b2ea0c9b483d33</citedby><cites>FETCH-LOGICAL-c5460-5dcd3cd64fd8db69e77f05ab4d88d824bd36b8810240fd4c8f6b2ea0c9b483d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20454531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Einstein, Daniel R.</creatorcontrib><creatorcontrib>Del Pin, Facundo</creatorcontrib><creatorcontrib>Jiao, Xiangmin</creatorcontrib><creatorcontrib>Kuprat, Andrew P.</creatorcontrib><creatorcontrib>Carson, James P.</creatorcontrib><creatorcontrib>Kunzelman, Karyn S.</creatorcontrib><creatorcontrib>Cochran, Richard P.</creatorcontrib><creatorcontrib>Guccione, Julius M.</creatorcontrib><creatorcontrib>Ratcliffe, Mark B.</creatorcontrib><title>Fluid-structure interactions of the mitral valve and left heart: Comprehensive strategies, past, present and future</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><description>The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, MR can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid‐flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid–structure interaction (FSI) model of the left heart is not trivial; it requires a careful characterization of the in vivo cardiac geometry, the tissue parameterization through inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, the automatic grid‐generation algorithms that are capable of accurately discretizing the cardiac geometry, the innovations in image analysis, the competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this paper, we profile our work toward a comprehensive FSI model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, FSI and validation. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>biofluid-structure interactions</subject><subject>Constitutive relationships</subject><subject>Fluid-structure interaction</subject><subject>Heart</subject><subject>imaging-based finite element models</subject><subject>ischemic mitral regurgitation</subject><subject>Mathematical models</subject><subject>Parametrization</subject><subject>Remodeling</subject><subject>Stresses</subject><subject>Valves</subject><issn>2040-7939</issn><issn>0029-5981</issn><issn>2040-7947</issn><issn>2040-7947</issn><issn>1069-8299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFks1vFCEYxidGY5vaxL_AcNODU_mG8WBiNraadOtBTRMvhIF3uuh8bIFZ7X8va9dVD1oOQPL8eF5eeKrqMcEnBGP6wo3DCaEa36sOKea4Vg1X9_d71hxUxyl9wWXQpmkUe1gdFE1wwchhlU77Ofg65Ti7PEdAYcwQrcthGhOaOpRXgIaQo-3RxvYbQHb0qIcuoxXYmF-ixTSsI6xgTKGoxchmuAqQnqO1TbnMERKM-ee5bt7WeFQ96Gyf4Hi3HlWfTt98XLytz9-fvVu8Pq-d4BLXwjvPnJe889q3sgGlOixsy73WXlPeeiZbrQmmHHeeO93JloLFrmm5Zp6xo-rVre96bgfwrtyitGHWMQw23pjJBvO3MoaVuZo2hmrJJRHF4OnOIE7XM6RshpAc9L0dYZqTUZxLSomWhXz2X5JoJoQgXNC7UaWk5LyRzd0oplhzXP77N-rilFKEbt8mwWYbE1NiYrYxKeiTP59lD_4KRQHqW-Bb6OHmn0ZmcbHcGe74kDJ83_M2fjVSMSXM5cWZYZcfqF5-XhrMfgApwdcl</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Einstein, Daniel R.</creator><creator>Del Pin, Facundo</creator><creator>Jiao, Xiangmin</creator><creator>Kuprat, Andrew P.</creator><creator>Carson, James P.</creator><creator>Kunzelman, Karyn S.</creator><creator>Cochran, Richard P.</creator><creator>Guccione, Julius M.</creator><creator>Ratcliffe, Mark B.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201003</creationdate><title>Fluid-structure interactions of the mitral valve and left heart: Comprehensive strategies, past, present and future</title><author>Einstein, Daniel R. ; Del Pin, Facundo ; Jiao, Xiangmin ; Kuprat, Andrew P. ; Carson, James P. ; Kunzelman, Karyn S. ; Cochran, Richard P. ; Guccione, Julius M. ; Ratcliffe, Mark B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5460-5dcd3cd64fd8db69e77f05ab4d88d824bd36b8810240fd4c8f6b2ea0c9b483d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>biofluid-structure interactions</topic><topic>Constitutive relationships</topic><topic>Fluid-structure interaction</topic><topic>Heart</topic><topic>imaging-based finite element models</topic><topic>ischemic mitral regurgitation</topic><topic>Mathematical models</topic><topic>Parametrization</topic><topic>Remodeling</topic><topic>Stresses</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Einstein, Daniel R.</creatorcontrib><creatorcontrib>Del Pin, Facundo</creatorcontrib><creatorcontrib>Jiao, Xiangmin</creatorcontrib><creatorcontrib>Kuprat, Andrew P.</creatorcontrib><creatorcontrib>Carson, James P.</creatorcontrib><creatorcontrib>Kunzelman, Karyn S.</creatorcontrib><creatorcontrib>Cochran, Richard P.</creatorcontrib><creatorcontrib>Guccione, Julius M.</creatorcontrib><creatorcontrib>Ratcliffe, Mark B.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Einstein, Daniel R.</au><au>Del Pin, Facundo</au><au>Jiao, Xiangmin</au><au>Kuprat, Andrew P.</au><au>Carson, James P.</au><au>Kunzelman, Karyn S.</au><au>Cochran, Richard P.</au><au>Guccione, Julius M.</au><au>Ratcliffe, Mark B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid-structure interactions of the mitral valve and left heart: Comprehensive strategies, past, present and future</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int. J. Numer. Meth. Biomed. Engng</addtitle><date>2010-03</date><risdate>2010</risdate><volume>26</volume><issue>3-4</issue><spage>348</spage><epage>380</epage><pages>348-380</pages><issn>2040-7939</issn><issn>0029-5981</issn><issn>2040-7947</issn><eissn>2040-7947</eissn><eissn>1069-8299</eissn><abstract>The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, MR can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid‐flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid–structure interaction (FSI) model of the left heart is not trivial; it requires a careful characterization of the in vivo cardiac geometry, the tissue parameterization through inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, the automatic grid‐generation algorithms that are capable of accurately discretizing the cardiac geometry, the innovations in image analysis, the competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this paper, we profile our work toward a comprehensive FSI model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, FSI and validation. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>20454531</pmid><doi>10.1002/cnm.1280</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2010-03, Vol.26 (3-4), p.348-380
issn 2040-7939
0029-5981
2040-7947
2040-7947
1069-8299
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2864615
source Wiley-Blackwell Read & Publish Collection
subjects biofluid-structure interactions
Constitutive relationships
Fluid-structure interaction
Heart
imaging-based finite element models
ischemic mitral regurgitation
Mathematical models
Parametrization
Remodeling
Stresses
Valves
title Fluid-structure interactions of the mitral valve and left heart: Comprehensive strategies, past, present and future
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid-structure%20interactions%20of%20the%20mitral%20valve%20and%20left%20heart:%20Comprehensive%20strategies,%20past,%20present%20and%20future&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Einstein,%20Daniel%20R.&rft.date=2010-03&rft.volume=26&rft.issue=3-4&rft.spage=348&rft.epage=380&rft.pages=348-380&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.1280&rft_dat=%3Cproquest_pubme%3E1835551452%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5460-5dcd3cd64fd8db69e77f05ab4d88d824bd36b8810240fd4c8f6b2ea0c9b483d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1020840947&rft_id=info:pmid/20454531&rfr_iscdi=true