Loading…
FOXO3a Regulates Glycolysis via Transcriptional Control of Tumor Suppressor TSC1
Akt signal transduction induces coordinated increases in glycolysis and apoptosis resistance in a broad spectrum of cancers. Downstream of Akt, the FoxO transcription factors regulate apoptosis via Bim, but the contributions of FoxOs in regulating Akt-induced glycolysis are not well described. We fi...
Saved in:
Published in: | The Journal of biological chemistry 2010-05, Vol.285 (21), p.15960-15965 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Akt signal transduction induces coordinated increases in glycolysis and apoptosis resistance in a broad spectrum of cancers. Downstream of Akt, the FoxO transcription factors regulate apoptosis via Bim, but the contributions of FoxOs in regulating Akt-induced glycolysis are not well described. We find that FoxO3a knockdown is sufficient to induce apoptosis resistance in conjunction with elevated glycolysis. Glycolysis in FoxO3a-deficient cells was associated with increased S6K1 phosphorylation and was sensitive to rapamycin, an inhibitor of the mTORC1 pathway that has been linked to glycolysis regulation. We show that mTORC1-dependent glycolysis is increased in FoxO3a knockdown cells due to decreased expression of the TSC1 tumor suppressor that opposes mTORC1 activation. FoxO3a binds to and transactivates the TSC1 promoter, indicating a key role for FoxO3a in regulating TSC1 expression. Together, these data demonstrate that FoxO3a regulates glycolysis downstream of Akt through transcriptional control of Tsc1. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M110.121871 |