Loading…

Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils

The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2010-06, Vol.98 (12), p.3070-3077
Main Authors: Harnagea, Catalin, Vallières, Martin, Pfeffer, Christian P., Wu, Dong, Olsen, Bjorn R., Pignolet, Alain, Légaré, François, Gruverman, Alexei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3
cites cdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3
container_end_page 3077
container_issue 12
container_start_page 3070
container_title Biophysical journal
container_volume 98
creator Harnagea, Catalin
Vallières, Martin
Pfeffer, Christian P.
Wu, Dong
Olsen, Bjorn R.
Pignolet, Alain
Légaré, François
Gruverman, Alexei
description The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs.
doi_str_mv 10.1016/j.bpj.2010.02.047
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2884257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349510003279</els_id><sourcerecordid>2068066581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhS0EYsvCD-CCIi6cUsZ27DhCQloVCpVWcKCcLceZFEeJXeykaP89XnVZAQeQD5bH3zzNvEfIcwprClS-HtbtcVgzyG9ga6jqB2RFRcVKACUfkhUAyJJXjbggT1IaACgTQB-TCwZCQMNgRcz-RyjfuQl9csGbsfhkfEjWjFh8meNi5yXmovFdsV28nc_MbjIH5w-F88XOd-7kuiVXN2EczQF9sb85YrErtq6NbkxPyaPejAmf3d2X5Ov2_X7zsbz-_GG3ubourajFXBrsK2mZ7BjjreEtdEo0Tc84p4A15XWvuMGm4UpyVC2thYSut7xi-Rhq-SV5e9Y9Lu2EnUU_59H1MbrJxBsdjNN__nj3TR_CSTOlKibqLPDqTiCG7wumWU8uWcxLeQxL0rXgUnFewf9Jznn2V9JMvvyLHMISs4dJC0aFqhsqMkTPkI0hpYj9_dAU9G3QetA5aH0btAamc9C558Xv2953_Eo2A2_OAGbPTw6jTtaht9i5iHbWXXD_kP8JtS-4oA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>521587915</pqid></control><display><type>article</type><title>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</title><source>PubMed Central</source><creator>Harnagea, Catalin ; Vallières, Martin ; Pfeffer, Christian P. ; Wu, Dong ; Olsen, Bjorn R. ; Pignolet, Alain ; Légaré, François ; Gruverman, Alexei</creator><creatorcontrib>Harnagea, Catalin ; Vallières, Martin ; Pfeffer, Christian P. ; Wu, Dong ; Olsen, Bjorn R. ; Pignolet, Alain ; Légaré, François ; Gruverman, Alexei</creatorcontrib><description>The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2010.02.047</identifier><identifier>PMID: 20550920</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anisotropy ; Biomechanical Phenomena ; Biomolecules ; Bundles ; Collagen Type I - chemistry ; Collagen Type I - metabolism ; Collagen Type I - ultrastructure ; Collagens ; Electric properties ; Electricity ; Fibers ; Mice ; Microscopy ; Microscopy, Atomic Force ; Models, Molecular ; Molecular Imaging ; Musculoskeletal system ; Nanostructure ; Nanotechnology ; Orientation ; Piezoelectricity ; Protein Structure, Tertiary ; Proteins ; Spectroscopy, Imaging, and Other Techniques ; Time Factors ; Tissues</subject><ispartof>Biophysical journal, 2010-06, Vol.98 (12), p.3070-3077</ispartof><rights>2010 Biophysical Society</rights><rights>(c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 16, 2010</rights><rights>2010 by the Biophysical Society.. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</citedby><cites>FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884257/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884257/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20550920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harnagea, Catalin</creatorcontrib><creatorcontrib>Vallières, Martin</creatorcontrib><creatorcontrib>Pfeffer, Christian P.</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Olsen, Bjorn R.</creatorcontrib><creatorcontrib>Pignolet, Alain</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><title>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Biomechanical Phenomena</subject><subject>Biomolecules</subject><subject>Bundles</subject><subject>Collagen Type I - chemistry</subject><subject>Collagen Type I - metabolism</subject><subject>Collagen Type I - ultrastructure</subject><subject>Collagens</subject><subject>Electric properties</subject><subject>Electricity</subject><subject>Fibers</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>Molecular Imaging</subject><subject>Musculoskeletal system</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Orientation</subject><subject>Piezoelectricity</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Spectroscopy, Imaging, and Other Techniques</subject><subject>Time Factors</subject><subject>Tissues</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUGP0zAQhS0EYsvCD-CCIi6cUsZ27DhCQloVCpVWcKCcLceZFEeJXeykaP89XnVZAQeQD5bH3zzNvEfIcwprClS-HtbtcVgzyG9ga6jqB2RFRcVKACUfkhUAyJJXjbggT1IaACgTQB-TCwZCQMNgRcz-RyjfuQl9csGbsfhkfEjWjFh8meNi5yXmovFdsV28nc_MbjIH5w-F88XOd-7kuiVXN2EczQF9sb85YrErtq6NbkxPyaPejAmf3d2X5Ov2_X7zsbz-_GG3ubourajFXBrsK2mZ7BjjreEtdEo0Tc84p4A15XWvuMGm4UpyVC2thYSut7xi-Rhq-SV5e9Y9Lu2EnUU_59H1MbrJxBsdjNN__nj3TR_CSTOlKibqLPDqTiCG7wumWU8uWcxLeQxL0rXgUnFewf9Jznn2V9JMvvyLHMISs4dJC0aFqhsqMkTPkI0hpYj9_dAU9G3QetA5aH0btAamc9C558Xv2953_Eo2A2_OAGbPTw6jTtaht9i5iHbWXXD_kP8JtS-4oA</recordid><startdate>20100616</startdate><enddate>20100616</enddate><creator>Harnagea, Catalin</creator><creator>Vallières, Martin</creator><creator>Pfeffer, Christian P.</creator><creator>Wu, Dong</creator><creator>Olsen, Bjorn R.</creator><creator>Pignolet, Alain</creator><creator>Légaré, François</creator><creator>Gruverman, Alexei</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100616</creationdate><title>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</title><author>Harnagea, Catalin ; Vallières, Martin ; Pfeffer, Christian P. ; Wu, Dong ; Olsen, Bjorn R. ; Pignolet, Alain ; Légaré, François ; Gruverman, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Biomechanical Phenomena</topic><topic>Biomolecules</topic><topic>Bundles</topic><topic>Collagen Type I - chemistry</topic><topic>Collagen Type I - metabolism</topic><topic>Collagen Type I - ultrastructure</topic><topic>Collagens</topic><topic>Electric properties</topic><topic>Electricity</topic><topic>Fibers</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>Molecular Imaging</topic><topic>Musculoskeletal system</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Orientation</topic><topic>Piezoelectricity</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Spectroscopy, Imaging, and Other Techniques</topic><topic>Time Factors</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harnagea, Catalin</creatorcontrib><creatorcontrib>Vallières, Martin</creatorcontrib><creatorcontrib>Pfeffer, Christian P.</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Olsen, Bjorn R.</creatorcontrib><creatorcontrib>Pignolet, Alain</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harnagea, Catalin</au><au>Vallières, Martin</au><au>Pfeffer, Christian P.</au><au>Wu, Dong</au><au>Olsen, Bjorn R.</au><au>Pignolet, Alain</au><au>Légaré, François</au><au>Gruverman, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-06-16</date><risdate>2010</risdate><volume>98</volume><issue>12</issue><spage>3070</spage><epage>3077</epage><pages>3070-3077</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20550920</pmid><doi>10.1016/j.bpj.2010.02.047</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2010-06, Vol.98 (12), p.3070-3077
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2884257
source PubMed Central
subjects Animals
Anisotropy
Biomechanical Phenomena
Biomolecules
Bundles
Collagen Type I - chemistry
Collagen Type I - metabolism
Collagen Type I - ultrastructure
Collagens
Electric properties
Electricity
Fibers
Mice
Microscopy
Microscopy, Atomic Force
Models, Molecular
Molecular Imaging
Musculoskeletal system
Nanostructure
Nanotechnology
Orientation
Piezoelectricity
Protein Structure, Tertiary
Proteins
Spectroscopy, Imaging, and Other Techniques
Time Factors
Tissues
title Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Nanoscale%20Structural%20and%20Functional%20Imaging%20in%20Individual%20Collagen%20Type%20I%20Fibrils&rft.jtitle=Biophysical%20journal&rft.au=Harnagea,%20Catalin&rft.date=2010-06-16&rft.volume=98&rft.issue=12&rft.spage=3070&rft.epage=3077&rft.pages=3070-3077&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2010.02.047&rft_dat=%3Cproquest_pubme%3E2068066581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=521587915&rft_id=info:pmid/20550920&rfr_iscdi=true