Loading…
Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils
The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to...
Saved in:
Published in: | Biophysical journal 2010-06, Vol.98 (12), p.3070-3077 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3 |
container_end_page | 3077 |
container_issue | 12 |
container_start_page | 3070 |
container_title | Biophysical journal |
container_volume | 98 |
creator | Harnagea, Catalin Vallières, Martin Pfeffer, Christian P. Wu, Dong Olsen, Bjorn R. Pignolet, Alain Légaré, François Gruverman, Alexei |
description | The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs. |
doi_str_mv | 10.1016/j.bpj.2010.02.047 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2884257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349510003279</els_id><sourcerecordid>2068066581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhS0EYsvCD-CCIi6cUsZ27DhCQloVCpVWcKCcLceZFEeJXeykaP89XnVZAQeQD5bH3zzNvEfIcwprClS-HtbtcVgzyG9ga6jqB2RFRcVKACUfkhUAyJJXjbggT1IaACgTQB-TCwZCQMNgRcz-RyjfuQl9csGbsfhkfEjWjFh8meNi5yXmovFdsV28nc_MbjIH5w-F88XOd-7kuiVXN2EczQF9sb85YrErtq6NbkxPyaPejAmf3d2X5Ov2_X7zsbz-_GG3ubourajFXBrsK2mZ7BjjreEtdEo0Tc84p4A15XWvuMGm4UpyVC2thYSut7xi-Rhq-SV5e9Y9Lu2EnUU_59H1MbrJxBsdjNN__nj3TR_CSTOlKibqLPDqTiCG7wumWU8uWcxLeQxL0rXgUnFewf9Jznn2V9JMvvyLHMISs4dJC0aFqhsqMkTPkI0hpYj9_dAU9G3QetA5aH0btAamc9C558Xv2953_Eo2A2_OAGbPTw6jTtaht9i5iHbWXXD_kP8JtS-4oA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>521587915</pqid></control><display><type>article</type><title>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</title><source>PubMed Central</source><creator>Harnagea, Catalin ; Vallières, Martin ; Pfeffer, Christian P. ; Wu, Dong ; Olsen, Bjorn R. ; Pignolet, Alain ; Légaré, François ; Gruverman, Alexei</creator><creatorcontrib>Harnagea, Catalin ; Vallières, Martin ; Pfeffer, Christian P. ; Wu, Dong ; Olsen, Bjorn R. ; Pignolet, Alain ; Légaré, François ; Gruverman, Alexei</creatorcontrib><description>The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2010.02.047</identifier><identifier>PMID: 20550920</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anisotropy ; Biomechanical Phenomena ; Biomolecules ; Bundles ; Collagen Type I - chemistry ; Collagen Type I - metabolism ; Collagen Type I - ultrastructure ; Collagens ; Electric properties ; Electricity ; Fibers ; Mice ; Microscopy ; Microscopy, Atomic Force ; Models, Molecular ; Molecular Imaging ; Musculoskeletal system ; Nanostructure ; Nanotechnology ; Orientation ; Piezoelectricity ; Protein Structure, Tertiary ; Proteins ; Spectroscopy, Imaging, and Other Techniques ; Time Factors ; Tissues</subject><ispartof>Biophysical journal, 2010-06, Vol.98 (12), p.3070-3077</ispartof><rights>2010 Biophysical Society</rights><rights>(c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 16, 2010</rights><rights>2010 by the Biophysical Society.. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</citedby><cites>FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884257/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884257/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20550920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harnagea, Catalin</creatorcontrib><creatorcontrib>Vallières, Martin</creatorcontrib><creatorcontrib>Pfeffer, Christian P.</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Olsen, Bjorn R.</creatorcontrib><creatorcontrib>Pignolet, Alain</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><title>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Biomechanical Phenomena</subject><subject>Biomolecules</subject><subject>Bundles</subject><subject>Collagen Type I - chemistry</subject><subject>Collagen Type I - metabolism</subject><subject>Collagen Type I - ultrastructure</subject><subject>Collagens</subject><subject>Electric properties</subject><subject>Electricity</subject><subject>Fibers</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>Molecular Imaging</subject><subject>Musculoskeletal system</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Orientation</subject><subject>Piezoelectricity</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Spectroscopy, Imaging, and Other Techniques</subject><subject>Time Factors</subject><subject>Tissues</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUGP0zAQhS0EYsvCD-CCIi6cUsZ27DhCQloVCpVWcKCcLceZFEeJXeykaP89XnVZAQeQD5bH3zzNvEfIcwprClS-HtbtcVgzyG9ga6jqB2RFRcVKACUfkhUAyJJXjbggT1IaACgTQB-TCwZCQMNgRcz-RyjfuQl9csGbsfhkfEjWjFh8meNi5yXmovFdsV28nc_MbjIH5w-F88XOd-7kuiVXN2EczQF9sb85YrErtq6NbkxPyaPejAmf3d2X5Ov2_X7zsbz-_GG3ubourajFXBrsK2mZ7BjjreEtdEo0Tc84p4A15XWvuMGm4UpyVC2thYSut7xi-Rhq-SV5e9Y9Lu2EnUU_59H1MbrJxBsdjNN__nj3TR_CSTOlKibqLPDqTiCG7wumWU8uWcxLeQxL0rXgUnFewf9Jznn2V9JMvvyLHMISs4dJC0aFqhsqMkTPkI0hpYj9_dAU9G3QetA5aH0btAamc9C558Xv2953_Eo2A2_OAGbPTw6jTtaht9i5iHbWXXD_kP8JtS-4oA</recordid><startdate>20100616</startdate><enddate>20100616</enddate><creator>Harnagea, Catalin</creator><creator>Vallières, Martin</creator><creator>Pfeffer, Christian P.</creator><creator>Wu, Dong</creator><creator>Olsen, Bjorn R.</creator><creator>Pignolet, Alain</creator><creator>Légaré, François</creator><creator>Gruverman, Alexei</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100616</creationdate><title>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</title><author>Harnagea, Catalin ; Vallières, Martin ; Pfeffer, Christian P. ; Wu, Dong ; Olsen, Bjorn R. ; Pignolet, Alain ; Légaré, François ; Gruverman, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Biomechanical Phenomena</topic><topic>Biomolecules</topic><topic>Bundles</topic><topic>Collagen Type I - chemistry</topic><topic>Collagen Type I - metabolism</topic><topic>Collagen Type I - ultrastructure</topic><topic>Collagens</topic><topic>Electric properties</topic><topic>Electricity</topic><topic>Fibers</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>Molecular Imaging</topic><topic>Musculoskeletal system</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Orientation</topic><topic>Piezoelectricity</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Spectroscopy, Imaging, and Other Techniques</topic><topic>Time Factors</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harnagea, Catalin</creatorcontrib><creatorcontrib>Vallières, Martin</creatorcontrib><creatorcontrib>Pfeffer, Christian P.</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Olsen, Bjorn R.</creatorcontrib><creatorcontrib>Pignolet, Alain</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harnagea, Catalin</au><au>Vallières, Martin</au><au>Pfeffer, Christian P.</au><au>Wu, Dong</au><au>Olsen, Bjorn R.</au><au>Pignolet, Alain</au><au>Légaré, François</au><au>Gruverman, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-06-16</date><risdate>2010</risdate><volume>98</volume><issue>12</issue><spage>3070</spage><epage>3077</epage><pages>3070-3077</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be ∼5 μs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20550920</pmid><doi>10.1016/j.bpj.2010.02.047</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2010-06, Vol.98 (12), p.3070-3077 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2884257 |
source | PubMed Central |
subjects | Animals Anisotropy Biomechanical Phenomena Biomolecules Bundles Collagen Type I - chemistry Collagen Type I - metabolism Collagen Type I - ultrastructure Collagens Electric properties Electricity Fibers Mice Microscopy Microscopy, Atomic Force Models, Molecular Molecular Imaging Musculoskeletal system Nanostructure Nanotechnology Orientation Piezoelectricity Protein Structure, Tertiary Proteins Spectroscopy, Imaging, and Other Techniques Time Factors Tissues |
title | Two-Dimensional Nanoscale Structural and Functional Imaging in Individual Collagen Type I Fibrils |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Nanoscale%20Structural%20and%20Functional%20Imaging%20in%20Individual%20Collagen%20Type%20I%20Fibrils&rft.jtitle=Biophysical%20journal&rft.au=Harnagea,%20Catalin&rft.date=2010-06-16&rft.volume=98&rft.issue=12&rft.spage=3070&rft.epage=3077&rft.pages=3070-3077&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2010.02.047&rft_dat=%3Cproquest_pubme%3E2068066581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-aef46c26d223ba3b0d8599f23310e7137f83ae993863e8b17560dfc342424a1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=521587915&rft_id=info:pmid/20550920&rfr_iscdi=true |