Loading…

Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence

Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach h...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2010-09, Vol.66 (3), p.864-874
Main Authors: Wang, Rui, Lagakos, Stephen W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3
cites cdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3
container_end_page 874
container_issue 3
container_start_page 864
container_title Biometrics
container_volume 66
creator Wang, Rui
Lagakos, Stephen W.
description Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate.
doi_str_mv 10.1111/j.1541-0420.2009.01356.x
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40962457</jstor_id><sourcerecordid>40962457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhJwARF04JdmLH9gWpXbXdSC1F9IvbyEkmS5ZsUuyk3f57nGa1BU74Yo_mmdcz8xISMBoxfz6tIiY4CymPaRRTqiPKEpFGm2dktks8JzNKaRomnH3fI6-cW_lQCxq_JHtMaxYzyWckOxiWa2x7LIO57ZwLL7Do6641TfDV4p1psC0wuETX1-0yqDobHPnn2jyGi-w6yNqiLkfoNXlRmcbhm-29T66Ojy7ni_D0_CSbH5yGhVAiDU2V50JIbdJcpaKkUkutpco5ikqXujLaYJmizDFVirNCIQrGBWNJgjKmZbJPPk-6t0O-xrLwzVvTwK31XdkH6EwNf2fa-gcsuzuIldIxl17g41bAdr8GPxmsa1dg05gWu8GBFIJJlsSJJz_8Q666wfrdjBDjTFKVekhNUDHuz2K1a4VRGN2CFYymwGgKjG7Bo1uw8aXv_hzlqXBrz9Os93WDD_8tDIfZ-dn49AJvJ4GV6zu7E-BUpzEX4y7CKV-7Hje7vLE_IZWJFHDz5QTO9ELQ68UNfPP8-4mvTAdmaWsHVxex_5Yy5e2SOvkNj_TFVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751417086</pqid></control><display><type>article</type><title>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Wang, Rui ; Lagakos, Stephen W.</creator><creatorcontrib>Wang, Rui ; Lagakos, Stephen W.</creatorcontrib><description>Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2009.01356.x</identifier><identifier>PMID: 19912174</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BIOMETRIC METHODOLOGY ; Confidence interval ; Cross-sectional studies ; Cross-Sectional Studies - statistics &amp; numerical data ; Diagnostic tests ; Diagnostic Tests, Routine - standards ; Diagnostic Tests, Routine - statistics &amp; numerical data ; Estimate reliability ; False negative errors ; False Negative Reactions ; HIV ; HIV Infections - epidemiology ; Human immunodeficiency virus ; Humans ; Incidence ; Incidence rate ; Infections ; Interval estimators ; Maximum likelihood estimation ; Maximum likelihood estimators ; Medical diagnostic tests ; Prevalence ; Prevalence estimators ; Sensitivity and Specificity ; Standard error</subject><ispartof>Biometrics, 2010-09, Vol.66 (3), p.864-874</ispartof><rights>2010 International Biometric Society</rights><rights>2009, The International Biometric Society</rights><rights>2009, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</citedby><cites>FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40962457$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40962457$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19912174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Lagakos, Stephen W.</creatorcontrib><title>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate.</description><subject>BIOMETRIC METHODOLOGY</subject><subject>Confidence interval</subject><subject>Cross-sectional studies</subject><subject>Cross-Sectional Studies - statistics &amp; numerical data</subject><subject>Diagnostic tests</subject><subject>Diagnostic Tests, Routine - standards</subject><subject>Diagnostic Tests, Routine - statistics &amp; numerical data</subject><subject>Estimate reliability</subject><subject>False negative errors</subject><subject>False Negative Reactions</subject><subject>HIV</subject><subject>HIV Infections - epidemiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Incidence</subject><subject>Incidence rate</subject><subject>Infections</subject><subject>Interval estimators</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Medical diagnostic tests</subject><subject>Prevalence</subject><subject>Prevalence estimators</subject><subject>Sensitivity and Specificity</subject><subject>Standard error</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhJwARF04JdmLH9gWpXbXdSC1F9IvbyEkmS5ZsUuyk3f57nGa1BU74Yo_mmdcz8xISMBoxfz6tIiY4CymPaRRTqiPKEpFGm2dktks8JzNKaRomnH3fI6-cW_lQCxq_JHtMaxYzyWckOxiWa2x7LIO57ZwLL7Do6641TfDV4p1psC0wuETX1-0yqDobHPnn2jyGi-w6yNqiLkfoNXlRmcbhm-29T66Ojy7ni_D0_CSbH5yGhVAiDU2V50JIbdJcpaKkUkutpco5ikqXujLaYJmizDFVirNCIQrGBWNJgjKmZbJPPk-6t0O-xrLwzVvTwK31XdkH6EwNf2fa-gcsuzuIldIxl17g41bAdr8GPxmsa1dg05gWu8GBFIJJlsSJJz_8Q666wfrdjBDjTFKVekhNUDHuz2K1a4VRGN2CFYymwGgKjG7Bo1uw8aXv_hzlqXBrz9Os93WDD_8tDIfZ-dn49AJvJ4GV6zu7E-BUpzEX4y7CKV-7Hje7vLE_IZWJFHDz5QTO9ELQ68UNfPP8-4mvTAdmaWsHVxex_5Yy5e2SOvkNj_TFVA</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Wang, Rui</creator><creator>Lagakos, Stephen W.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201009</creationdate><title>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</title><author>Wang, Rui ; Lagakos, Stephen W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BIOMETRIC METHODOLOGY</topic><topic>Confidence interval</topic><topic>Cross-sectional studies</topic><topic>Cross-Sectional Studies - statistics &amp; numerical data</topic><topic>Diagnostic tests</topic><topic>Diagnostic Tests, Routine - standards</topic><topic>Diagnostic Tests, Routine - statistics &amp; numerical data</topic><topic>Estimate reliability</topic><topic>False negative errors</topic><topic>False Negative Reactions</topic><topic>HIV</topic><topic>HIV Infections - epidemiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Incidence</topic><topic>Incidence rate</topic><topic>Infections</topic><topic>Interval estimators</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Medical diagnostic tests</topic><topic>Prevalence</topic><topic>Prevalence estimators</topic><topic>Sensitivity and Specificity</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Lagakos, Stephen W.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rui</au><au>Lagakos, Stephen W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2010-09</date><risdate>2010</risdate><volume>66</volume><issue>3</issue><spage>864</spage><epage>874</epage><pages>864-874</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19912174</pmid><doi>10.1111/j.1541-0420.2009.01356.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2010-09, Vol.66 (3), p.864-874
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889247
source EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects BIOMETRIC METHODOLOGY
Confidence interval
Cross-sectional studies
Cross-Sectional Studies - statistics & numerical data
Diagnostic tests
Diagnostic Tests, Routine - standards
Diagnostic Tests, Routine - statistics & numerical data
Estimate reliability
False negative errors
False Negative Reactions
HIV
HIV Infections - epidemiology
Human immunodeficiency virus
Humans
Incidence
Incidence rate
Infections
Interval estimators
Maximum likelihood estimation
Maximum likelihood estimators
Medical diagnostic tests
Prevalence
Prevalence estimators
Sensitivity and Specificity
Standard error
title Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Cross-Sectional%20Prevalence%20Testing%20for%20Estimating%20HIV%20Incidence&rft.jtitle=Biometrics&rft.au=Wang,%20Rui&rft.date=2010-09&rft.volume=66&rft.issue=3&rft.spage=864&rft.epage=874&rft.pages=864-874&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2009.01356.x&rft_dat=%3Cjstor_pubme%3E40962457%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=751417086&rft_id=info:pmid/19912174&rft_jstor_id=40962457&rfr_iscdi=true