Loading…
Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence
Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach h...
Saved in:
Published in: | Biometrics 2010-09, Vol.66 (3), p.864-874 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3 |
container_end_page | 874 |
container_issue | 3 |
container_start_page | 864 |
container_title | Biometrics |
container_volume | 66 |
creator | Wang, Rui Lagakos, Stephen W. |
description | Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate. |
doi_str_mv | 10.1111/j.1541-0420.2009.01356.x |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40962457</jstor_id><sourcerecordid>40962457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhJwARF04JdmLH9gWpXbXdSC1F9IvbyEkmS5ZsUuyk3f57nGa1BU74Yo_mmdcz8xISMBoxfz6tIiY4CymPaRRTqiPKEpFGm2dktks8JzNKaRomnH3fI6-cW_lQCxq_JHtMaxYzyWckOxiWa2x7LIO57ZwLL7Do6641TfDV4p1psC0wuETX1-0yqDobHPnn2jyGi-w6yNqiLkfoNXlRmcbhm-29T66Ojy7ni_D0_CSbH5yGhVAiDU2V50JIbdJcpaKkUkutpco5ikqXujLaYJmizDFVirNCIQrGBWNJgjKmZbJPPk-6t0O-xrLwzVvTwK31XdkH6EwNf2fa-gcsuzuIldIxl17g41bAdr8GPxmsa1dg05gWu8GBFIJJlsSJJz_8Q666wfrdjBDjTFKVekhNUDHuz2K1a4VRGN2CFYymwGgKjG7Bo1uw8aXv_hzlqXBrz9Os93WDD_8tDIfZ-dn49AJvJ4GV6zu7E-BUpzEX4y7CKV-7Hje7vLE_IZWJFHDz5QTO9ELQ68UNfPP8-4mvTAdmaWsHVxex_5Yy5e2SOvkNj_TFVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751417086</pqid></control><display><type>article</type><title>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Wang, Rui ; Lagakos, Stephen W.</creator><creatorcontrib>Wang, Rui ; Lagakos, Stephen W.</creatorcontrib><description>Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2009.01356.x</identifier><identifier>PMID: 19912174</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BIOMETRIC METHODOLOGY ; Confidence interval ; Cross-sectional studies ; Cross-Sectional Studies - statistics & numerical data ; Diagnostic tests ; Diagnostic Tests, Routine - standards ; Diagnostic Tests, Routine - statistics & numerical data ; Estimate reliability ; False negative errors ; False Negative Reactions ; HIV ; HIV Infections - epidemiology ; Human immunodeficiency virus ; Humans ; Incidence ; Incidence rate ; Infections ; Interval estimators ; Maximum likelihood estimation ; Maximum likelihood estimators ; Medical diagnostic tests ; Prevalence ; Prevalence estimators ; Sensitivity and Specificity ; Standard error</subject><ispartof>Biometrics, 2010-09, Vol.66 (3), p.864-874</ispartof><rights>2010 International Biometric Society</rights><rights>2009, The International Biometric Society</rights><rights>2009, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</citedby><cites>FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40962457$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40962457$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19912174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Lagakos, Stephen W.</creatorcontrib><title>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate.</description><subject>BIOMETRIC METHODOLOGY</subject><subject>Confidence interval</subject><subject>Cross-sectional studies</subject><subject>Cross-Sectional Studies - statistics & numerical data</subject><subject>Diagnostic tests</subject><subject>Diagnostic Tests, Routine - standards</subject><subject>Diagnostic Tests, Routine - statistics & numerical data</subject><subject>Estimate reliability</subject><subject>False negative errors</subject><subject>False Negative Reactions</subject><subject>HIV</subject><subject>HIV Infections - epidemiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Incidence</subject><subject>Incidence rate</subject><subject>Infections</subject><subject>Interval estimators</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Medical diagnostic tests</subject><subject>Prevalence</subject><subject>Prevalence estimators</subject><subject>Sensitivity and Specificity</subject><subject>Standard error</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhJwARF04JdmLH9gWpXbXdSC1F9IvbyEkmS5ZsUuyk3f57nGa1BU74Yo_mmdcz8xISMBoxfz6tIiY4CymPaRRTqiPKEpFGm2dktks8JzNKaRomnH3fI6-cW_lQCxq_JHtMaxYzyWckOxiWa2x7LIO57ZwLL7Do6641TfDV4p1psC0wuETX1-0yqDobHPnn2jyGi-w6yNqiLkfoNXlRmcbhm-29T66Ojy7ni_D0_CSbH5yGhVAiDU2V50JIbdJcpaKkUkutpco5ikqXujLaYJmizDFVirNCIQrGBWNJgjKmZbJPPk-6t0O-xrLwzVvTwK31XdkH6EwNf2fa-gcsuzuIldIxl17g41bAdr8GPxmsa1dg05gWu8GBFIJJlsSJJz_8Q666wfrdjBDjTFKVekhNUDHuz2K1a4VRGN2CFYymwGgKjG7Bo1uw8aXv_hzlqXBrz9Os93WDD_8tDIfZ-dn49AJvJ4GV6zu7E-BUpzEX4y7CKV-7Hje7vLE_IZWJFHDz5QTO9ELQ68UNfPP8-4mvTAdmaWsHVxex_5Yy5e2SOvkNj_TFVA</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Wang, Rui</creator><creator>Lagakos, Stephen W.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201009</creationdate><title>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</title><author>Wang, Rui ; Lagakos, Stephen W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BIOMETRIC METHODOLOGY</topic><topic>Confidence interval</topic><topic>Cross-sectional studies</topic><topic>Cross-Sectional Studies - statistics & numerical data</topic><topic>Diagnostic tests</topic><topic>Diagnostic Tests, Routine - standards</topic><topic>Diagnostic Tests, Routine - statistics & numerical data</topic><topic>Estimate reliability</topic><topic>False negative errors</topic><topic>False Negative Reactions</topic><topic>HIV</topic><topic>HIV Infections - epidemiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Incidence</topic><topic>Incidence rate</topic><topic>Infections</topic><topic>Interval estimators</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Medical diagnostic tests</topic><topic>Prevalence</topic><topic>Prevalence estimators</topic><topic>Sensitivity and Specificity</topic><topic>Standard error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Lagakos, Stephen W.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rui</au><au>Lagakos, Stephen W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2010-09</date><risdate>2010</risdate><volume>66</volume><issue>3</issue><spage>864</spage><epage>874</epage><pages>864-874</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean "window period" between detectability of HIV infection with the sensitive and less-sensitive test, which is used in the cross-sectional estimation procedure. The other is how to handle false negative results with the less-sensitive diagnostic test; that is, subjects who may test negative--implying a recent infection--long after they are infected. We propose and investigate an augmented design for cross-sectional incidence estimation studies in which subjects found in the recent infection state are followed for transition to the nonrecent infection state. Inference is based on likelihood methods that account for the length-biased nature of the window periods of subjects found in the recent infection state, and relate the distribution of their forward recurrence times to the population distribution of the window period. The approach performs well in simulation studies and eliminates the need for external approximations of the mean window period and, where applicable, the false negative rate.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>19912174</pmid><doi>10.1111/j.1541-0420.2009.01356.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2010-09, Vol.66 (3), p.864-874 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889247 |
source | EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | BIOMETRIC METHODOLOGY Confidence interval Cross-sectional studies Cross-Sectional Studies - statistics & numerical data Diagnostic tests Diagnostic Tests, Routine - standards Diagnostic Tests, Routine - statistics & numerical data Estimate reliability False negative errors False Negative Reactions HIV HIV Infections - epidemiology Human immunodeficiency virus Humans Incidence Incidence rate Infections Interval estimators Maximum likelihood estimation Maximum likelihood estimators Medical diagnostic tests Prevalence Prevalence estimators Sensitivity and Specificity Standard error |
title | Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Cross-Sectional%20Prevalence%20Testing%20for%20Estimating%20HIV%20Incidence&rft.jtitle=Biometrics&rft.au=Wang,%20Rui&rft.date=2010-09&rft.volume=66&rft.issue=3&rft.spage=864&rft.epage=874&rft.pages=864-874&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2009.01356.x&rft_dat=%3Cjstor_pubme%3E40962457%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5856-afbb5579a6b865d07979978b4e5f9d9fa9aed6e7be68841c8ee51451133e720d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=751417086&rft_id=info:pmid/19912174&rft_jstor_id=40962457&rfr_iscdi=true |