Loading…
Chromophore Formation in DsRed Occurs by a Branched Pathway
Like GFP, the fluorescent protein DsRed has a chromophore that forms autocatalytically within the folded protein, but the mechanism of DsRed chromophore formation has been unclear. It was proposed that an initial oxidation generates a green chromophore, and that a final oxidation yields the red chro...
Saved in:
Published in: | Journal of the American Chemical Society 2010-06, Vol.132 (24), p.8496-8505 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Like GFP, the fluorescent protein DsRed has a chromophore that forms autocatalytically within the folded protein, but the mechanism of DsRed chromophore formation has been unclear. It was proposed that an initial oxidation generates a green chromophore, and that a final oxidation yields the red chromophore. However, this model does not adequately explain why a mature DsRed sample contains a mixture of green and red chromophores. We present evidence that the maturation pathway for DsRed branches upstream of chromophore formation. After an initial oxidation step, a final oxidation to form the acylimine of the red chromophore is in kinetic competition with a dehydration to form the green chromophore. This scheme explains why green and red chromophores are alternative end points of the maturation pathway. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja1030084 |