Loading…
Ranked Levels of Influence model: Selecting influence techniques to minimize IT resistance
Implementation of electronic health records (EHR), particularly computerized physician/provider order entry systems (CPOE), is often met with resistance. Influence presented at the right time, in the right manner, may minimize resistance or at least limit the risk of complete system failure. Combini...
Saved in:
Published in: | Journal of biomedical informatics 2011-06, Vol.44 (3), p.497-504 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Implementation of electronic health records (EHR), particularly computerized physician/provider order entry systems (CPOE), is often met with resistance. Influence presented at the right time, in the right manner, may minimize resistance or at least limit the risk of complete system failure. Combining established theories on power, influence tactics, and resistance, we developed the Ranked Levels of Influence model. Applying it to documented examples of EHR/CPOE failures at Cedars-Sinai and Kaiser Permanente in Hawaii, we evaluated the influence applied, the resistance encountered, and the resulting risk to the system implementation. Using the Ranked Levels of Influence model as a guideline, we demonstrate that these system failures were associated with the use of hard influence tactics that resulted in higher levels of resistance. We suggest that when influence tactics remain at the soft tactics level, the level of resistance stabilizes or de-escalates and the system can be saved. |
---|---|
ISSN: | 1532-0464 1532-0480 |
DOI: | 10.1016/j.jbi.2010.02.007 |