Loading…
Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models
Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. Howe...
Saved in:
Published in: | Biometrics 2010-12, Vol.66 (4), p.1069-1077 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3 |
container_end_page | 1077 |
container_issue | 4 |
container_start_page | 1069 |
container_title | Biometrics |
container_volume | 66 |
creator | Bondell, Howard D. Krishna, Arun Ghosh, Sujit K. |
description | Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example. |
doi_str_mv | 10.1111/j.1541-0420.2010.01391.x |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40962503</jstor_id><sourcerecordid>40962503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</originalsourceid><addsrcrecordid>eNqNkUtvEzEUhUcIREPhJwAWG1YTfP2a8QaJhrYUJVSiLXR35Uzs4jAZF3sC6b_HQ9rwWOGFX-e7x746RUGAjiGPV8sxSAElFYyOGc23FLiG8eZeMdoJ94sRpVSVXMDlXvEopWU-aknZw2Iv1yguqBgV5--D73ryyURv5q0lZ7a1Te9DR1yI5Mhv7IKYbkE-5imsyKFzWU7Ed2TqO2simQ1IeXc_CwvbpsfFA2faZJ_crvvFxdHh-eRdOT09Ppm8mZaNkgClqDTM5045XbEG5tBYJam0mstGsMo5oxjjBioKAqpGSmEzTqnTRljKKsP3i9db3-v1fGUXje36aFq8jn5l4g0G4_FvpfNf8Cp8R1ZrqeoqG7y8NYjh29qmHlc-NbZtTWfDOmHNALQAzTL54h9yGdaxy91hDaoGyes6Q_UWamJIKVq3-wpQHILDJQ754JAPDsHhr-Bwk0uf_dnKrvAuqd-9_vCtvflvYzw4OZ0N22zwdGuwTH2IOwNBtWKS8qyXW92n3m52uolfUVW8kvj5wzGCeAtwqSZ4kPnnW96ZgOYq-oQXZ_lpTkFzRmvBfwJjDcdM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816815388</pqid></control><display><type>article</type><title>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>EBSCOhost SPORTDiscus - Ebooks</source><creator>Bondell, Howard D. ; Krishna, Arun ; Ghosh, Sujit K.</creator><creatorcontrib>Bondell, Howard D. ; Krishna, Arun ; Ghosh, Sujit K.</creatorcontrib><description>Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2010.01391.x</identifier><identifier>PMID: 20163404</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Adaptive LASSO ; Algorithms ; BIOMETRIC METHODOLOGY ; Biometrics ; Biometry - methods ; Computer Simulation ; Constrained EM algorithm ; Covariance ; Covariance matrices ; Environmental agencies ; Estimating techniques ; Estimation methods ; Estimators ; Humans ; Likelihood Functions ; Linear mixed model ; Linear Models ; Linear regression ; Maximum likelihood estimation ; Modeling ; Models, Statistical ; Modified Cholesky decomposition ; Oracles ; Penalized likelihood ; Statistical analysis ; Variable selection ; Variables</subject><ispartof>Biometrics, 2010-12, Vol.66 (4), p.1069-1077</ispartof><rights>The International Biometric Society, 2010</rights><rights>2010, The International Biometric Society</rights><rights>2010, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</citedby><cites>FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40962503$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40962503$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20163404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Krishna, Arun</creatorcontrib><creatorcontrib>Ghosh, Sujit K.</creatorcontrib><title>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.</description><subject>Adaptive LASSO</subject><subject>Algorithms</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Computer Simulation</subject><subject>Constrained EM algorithm</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Environmental agencies</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Linear mixed model</subject><subject>Linear Models</subject><subject>Linear regression</subject><subject>Maximum likelihood estimation</subject><subject>Modeling</subject><subject>Models, Statistical</subject><subject>Modified Cholesky decomposition</subject><subject>Oracles</subject><subject>Penalized likelihood</subject><subject>Statistical analysis</subject><subject>Variable selection</subject><subject>Variables</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUtvEzEUhUcIREPhJwAWG1YTfP2a8QaJhrYUJVSiLXR35Uzs4jAZF3sC6b_HQ9rwWOGFX-e7x746RUGAjiGPV8sxSAElFYyOGc23FLiG8eZeMdoJ94sRpVSVXMDlXvEopWU-aknZw2Iv1yguqBgV5--D73ryyURv5q0lZ7a1Te9DR1yI5Mhv7IKYbkE-5imsyKFzWU7Ed2TqO2simQ1IeXc_CwvbpsfFA2faZJ_crvvFxdHh-eRdOT09Ppm8mZaNkgClqDTM5045XbEG5tBYJam0mstGsMo5oxjjBioKAqpGSmEzTqnTRljKKsP3i9db3-v1fGUXje36aFq8jn5l4g0G4_FvpfNf8Cp8R1ZrqeoqG7y8NYjh29qmHlc-NbZtTWfDOmHNALQAzTL54h9yGdaxy91hDaoGyes6Q_UWamJIKVq3-wpQHILDJQ754JAPDsHhr-Bwk0uf_dnKrvAuqd-9_vCtvflvYzw4OZ0N22zwdGuwTH2IOwNBtWKS8qyXW92n3m52uolfUVW8kvj5wzGCeAtwqSZ4kPnnW96ZgOYq-oQXZ_lpTkFzRmvBfwJjDcdM</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Bondell, Howard D.</creator><creator>Krishna, Arun</creator><creator>Ghosh, Sujit K.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201012</creationdate><title>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</title><author>Bondell, Howard D. ; Krishna, Arun ; Ghosh, Sujit K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive LASSO</topic><topic>Algorithms</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Computer Simulation</topic><topic>Constrained EM algorithm</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Environmental agencies</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Linear mixed model</topic><topic>Linear Models</topic><topic>Linear regression</topic><topic>Maximum likelihood estimation</topic><topic>Modeling</topic><topic>Models, Statistical</topic><topic>Modified Cholesky decomposition</topic><topic>Oracles</topic><topic>Penalized likelihood</topic><topic>Statistical analysis</topic><topic>Variable selection</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Krishna, Arun</creatorcontrib><creatorcontrib>Ghosh, Sujit K.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondell, Howard D.</au><au>Krishna, Arun</au><au>Ghosh, Sujit K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2010-12</date><risdate>2010</risdate><volume>66</volume><issue>4</issue><spage>1069</spage><epage>1077</epage><pages>1069-1077</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20163404</pmid><doi>10.1111/j.1541-0420.2010.01391.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2010-12, Vol.66 (4), p.1069-1077 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895687 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; EBSCOhost SPORTDiscus - Ebooks |
subjects | Adaptive LASSO Algorithms BIOMETRIC METHODOLOGY Biometrics Biometry - methods Computer Simulation Constrained EM algorithm Covariance Covariance matrices Environmental agencies Estimating techniques Estimation methods Estimators Humans Likelihood Functions Linear mixed model Linear Models Linear regression Maximum likelihood estimation Modeling Models, Statistical Modified Cholesky decomposition Oracles Penalized likelihood Statistical analysis Variable selection Variables |
title | Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Variable%20Selection%20for%20Fixed%20and%20Random%20Effects%20in%20Linear%20Mixed-Effects%20Models&rft.jtitle=Biometrics&rft.au=Bondell,%20Howard%20D.&rft.date=2010-12&rft.volume=66&rft.issue=4&rft.spage=1069&rft.epage=1077&rft.pages=1069-1077&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2010.01391.x&rft_dat=%3Cjstor_pubme%3E40962503%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=816815388&rft_id=info:pmid/20163404&rft_jstor_id=40962503&rfr_iscdi=true |