Loading…

Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models

Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. Howe...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2010-12, Vol.66 (4), p.1069-1077
Main Authors: Bondell, Howard D., Krishna, Arun, Ghosh, Sujit K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3
cites cdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3
container_end_page 1077
container_issue 4
container_start_page 1069
container_title Biometrics
container_volume 66
creator Bondell, Howard D.
Krishna, Arun
Ghosh, Sujit K.
description Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.
doi_str_mv 10.1111/j.1541-0420.2010.01391.x
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40962503</jstor_id><sourcerecordid>40962503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</originalsourceid><addsrcrecordid>eNqNkUtvEzEUhUcIREPhJwAWG1YTfP2a8QaJhrYUJVSiLXR35Uzs4jAZF3sC6b_HQ9rwWOGFX-e7x746RUGAjiGPV8sxSAElFYyOGc23FLiG8eZeMdoJ94sRpVSVXMDlXvEopWU-aknZw2Iv1yguqBgV5--D73ryyURv5q0lZ7a1Te9DR1yI5Mhv7IKYbkE-5imsyKFzWU7Ed2TqO2simQ1IeXc_CwvbpsfFA2faZJ_crvvFxdHh-eRdOT09Ppm8mZaNkgClqDTM5045XbEG5tBYJam0mstGsMo5oxjjBioKAqpGSmEzTqnTRljKKsP3i9db3-v1fGUXje36aFq8jn5l4g0G4_FvpfNf8Cp8R1ZrqeoqG7y8NYjh29qmHlc-NbZtTWfDOmHNALQAzTL54h9yGdaxy91hDaoGyes6Q_UWamJIKVq3-wpQHILDJQ754JAPDsHhr-Bwk0uf_dnKrvAuqd-9_vCtvflvYzw4OZ0N22zwdGuwTH2IOwNBtWKS8qyXW92n3m52uolfUVW8kvj5wzGCeAtwqSZ4kPnnW96ZgOYq-oQXZ_lpTkFzRmvBfwJjDcdM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816815388</pqid></control><display><type>article</type><title>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><source>EBSCOhost SPORTDiscus - Ebooks</source><creator>Bondell, Howard D. ; Krishna, Arun ; Ghosh, Sujit K.</creator><creatorcontrib>Bondell, Howard D. ; Krishna, Arun ; Ghosh, Sujit K.</creatorcontrib><description>Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2010.01391.x</identifier><identifier>PMID: 20163404</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Adaptive LASSO ; Algorithms ; BIOMETRIC METHODOLOGY ; Biometrics ; Biometry - methods ; Computer Simulation ; Constrained EM algorithm ; Covariance ; Covariance matrices ; Environmental agencies ; Estimating techniques ; Estimation methods ; Estimators ; Humans ; Likelihood Functions ; Linear mixed model ; Linear Models ; Linear regression ; Maximum likelihood estimation ; Modeling ; Models, Statistical ; Modified Cholesky decomposition ; Oracles ; Penalized likelihood ; Statistical analysis ; Variable selection ; Variables</subject><ispartof>Biometrics, 2010-12, Vol.66 (4), p.1069-1077</ispartof><rights>The International Biometric Society, 2010</rights><rights>2010, The International Biometric Society</rights><rights>2010, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</citedby><cites>FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40962503$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40962503$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20163404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Krishna, Arun</creatorcontrib><creatorcontrib>Ghosh, Sujit K.</creatorcontrib><title>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.</description><subject>Adaptive LASSO</subject><subject>Algorithms</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Computer Simulation</subject><subject>Constrained EM algorithm</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Environmental agencies</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Linear mixed model</subject><subject>Linear Models</subject><subject>Linear regression</subject><subject>Maximum likelihood estimation</subject><subject>Modeling</subject><subject>Models, Statistical</subject><subject>Modified Cholesky decomposition</subject><subject>Oracles</subject><subject>Penalized likelihood</subject><subject>Statistical analysis</subject><subject>Variable selection</subject><subject>Variables</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUtvEzEUhUcIREPhJwAWG1YTfP2a8QaJhrYUJVSiLXR35Uzs4jAZF3sC6b_HQ9rwWOGFX-e7x746RUGAjiGPV8sxSAElFYyOGc23FLiG8eZeMdoJ94sRpVSVXMDlXvEopWU-aknZw2Iv1yguqBgV5--D73ryyURv5q0lZ7a1Te9DR1yI5Mhv7IKYbkE-5imsyKFzWU7Ed2TqO2simQ1IeXc_CwvbpsfFA2faZJ_crvvFxdHh-eRdOT09Ppm8mZaNkgClqDTM5045XbEG5tBYJam0mstGsMo5oxjjBioKAqpGSmEzTqnTRljKKsP3i9db3-v1fGUXje36aFq8jn5l4g0G4_FvpfNf8Cp8R1ZrqeoqG7y8NYjh29qmHlc-NbZtTWfDOmHNALQAzTL54h9yGdaxy91hDaoGyes6Q_UWamJIKVq3-wpQHILDJQ754JAPDsHhr-Bwk0uf_dnKrvAuqd-9_vCtvflvYzw4OZ0N22zwdGuwTH2IOwNBtWKS8qyXW92n3m52uolfUVW8kvj5wzGCeAtwqSZ4kPnnW96ZgOYq-oQXZ_lpTkFzRmvBfwJjDcdM</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Bondell, Howard D.</creator><creator>Krishna, Arun</creator><creator>Ghosh, Sujit K.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201012</creationdate><title>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</title><author>Bondell, Howard D. ; Krishna, Arun ; Ghosh, Sujit K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive LASSO</topic><topic>Algorithms</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Computer Simulation</topic><topic>Constrained EM algorithm</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Environmental agencies</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Linear mixed model</topic><topic>Linear Models</topic><topic>Linear regression</topic><topic>Maximum likelihood estimation</topic><topic>Modeling</topic><topic>Models, Statistical</topic><topic>Modified Cholesky decomposition</topic><topic>Oracles</topic><topic>Penalized likelihood</topic><topic>Statistical analysis</topic><topic>Variable selection</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondell, Howard D.</creatorcontrib><creatorcontrib>Krishna, Arun</creatorcontrib><creatorcontrib>Ghosh, Sujit K.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondell, Howard D.</au><au>Krishna, Arun</au><au>Ghosh, Sujit K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2010-12</date><risdate>2010</risdate><volume>66</volume><issue>4</issue><spage>1069</spage><epage>1077</epage><pages>1069-1077</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Summary It is of great practical interest to simultaneously identify the important predictors that correspond to both the fixed and random effects components in a linear mixed-effects (LME) model. Typical approaches perform selection separately on each of the fixed and random effect components. However, changing the structure of one set of effects can lead to different choices of variables for the other set of effects. We propose simultaneous selection of the fixed and random factors in an LME model using a modified Cholesky decomposition. Our method is based on a penalized joint log likelihood with an adaptive penalty for the selection and estimation of both the fixed and random effects. It performs model selection by allowing fixed effects or standard deviations of random effects to be exactly zero. A constrained expectation-maximization algorithm is then used to obtain the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle property, in that, asymptotically it performs as well as if the true model was known beforehand. We demonstrate the performance of our method based on a simulation study and a real data example.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20163404</pmid><doi>10.1111/j.1541-0420.2010.01391.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2010-12, Vol.66 (4), p.1069-1077
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2895687
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online; EBSCOhost SPORTDiscus - Ebooks
subjects Adaptive LASSO
Algorithms
BIOMETRIC METHODOLOGY
Biometrics
Biometry - methods
Computer Simulation
Constrained EM algorithm
Covariance
Covariance matrices
Environmental agencies
Estimating techniques
Estimation methods
Estimators
Humans
Likelihood Functions
Linear mixed model
Linear Models
Linear regression
Maximum likelihood estimation
Modeling
Models, Statistical
Modified Cholesky decomposition
Oracles
Penalized likelihood
Statistical analysis
Variable selection
Variables
title Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Variable%20Selection%20for%20Fixed%20and%20Random%20Effects%20in%20Linear%20Mixed-Effects%20Models&rft.jtitle=Biometrics&rft.au=Bondell,%20Howard%20D.&rft.date=2010-12&rft.volume=66&rft.issue=4&rft.spage=1069&rft.epage=1077&rft.pages=1069-1077&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2010.01391.x&rft_dat=%3Cjstor_pubme%3E40962503%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6511-4791bbf6f972c1b1ce6505e935c427ffa6223a1701417c554e1bb00f9a4e027a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=816815388&rft_id=info:pmid/20163404&rft_jstor_id=40962503&rfr_iscdi=true