Loading…

The Influence of the Oxygen Atom Acceptor on the Reaction Coordinate and Mechanism of Oxygen Atom Transfer From the Dioxo-Mo(VI) Complex, TpiPrMoO2(OPh), to Tertiary Phosphines

The oxygen atom transfer reactivity of the dioxo-Mo(VI) complex, Tp i Pr MoO 2 (OPh) (Tp i Pr = hydrotris(3-isopropylpyrazol-1-yl)borate), with a range of tertiary phosphines (PMe 3 , PMe 2 Ph, PEt 3 , PBu n 3 , PEt 2 Ph, PEtPh 2 and PMePh 2 ) has been investigated. The first step in all the reactio...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2010-06, Vol.49 (11), p.4895-4900
Main Authors: Basu, Partha, Kail, Brian W., Young, Charles G.
Format: Article
Language:eng ; jpn
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4900
container_issue 11
container_start_page 4895
container_title Inorganic chemistry
container_volume 49
creator Basu, Partha
Kail, Brian W.
Young, Charles G.
description The oxygen atom transfer reactivity of the dioxo-Mo(VI) complex, Tp i Pr MoO 2 (OPh) (Tp i Pr = hydrotris(3-isopropylpyrazol-1-yl)borate), with a range of tertiary phosphines (PMe 3 , PMe 2 Ph, PEt 3 , PBu n 3 , PEt 2 Ph, PEtPh 2 and PMePh 2 ) has been investigated. The first step in all the reactions follows a second-order rate law indicative of an associative transition state, consistent with nucleophilic attack by the phosphine on an oxo ligand, viz. Tp i Pr MoO 2 (OPh) + PR 3 → Tp i Pr MoO(OPh)(OPR 3 ). The calculated free energy of activation for the formation of the OPMe 3 intermediate ( Chem. Eur. J . 2006, 12 , 7501) is in excellent agreement with the experimental ΔG ‡ value reported here. The second step of the reaction, i.e., the exchange of the coordinated phosphine oxide by acetonitrile, Tp i Pr MoO(OPh)(OPR 3 ) + MeCN → Tp i Pr MoO(OPh)(MeCN) + OPR 3 , is first-order in starting complex in acetonitrile. The reaction occurs via a dissociative interchange (I d ) or associative interchange (I a ) mechanism, depending on the nature of the phosphine oxide. The activation parameters for the solvolysis of Tp i Pr MoO(OPh)(OPMe 3 ) (ΔH ‡ = 56.3 kJ mol −1 ; ΔS ‡ = −125.9 J mol −1 K −1 ; ΔG ‡ = 93.8 kJ mol −1 ) and Tp i Pr MoO(OPh)(OPEtPh 2 ) (ΔH ‡ = 66.5 kJ mol −1 ; ΔS ‡ = −67.6 J mol −1 K −1 ; ΔG ‡ = 86.7 kJ mol −1 ) by acetonitrile are indicative of I a mechanisms. In contrast, the corresponding parameters for the solvolysis reaction of Tp i Pr MoO(OPh)(OPEt 3 ) (ΔH ‡ = 95.8 kJ mol −1 ; ΔS ‡ = 26.0 J mol −1 K −1 ; ΔG ‡ = 88.1 kJ mol −1 ) and the remaining complexes by the same solvent are indicative of an I d mechanism. The equilibrium constant for the solvolysis of the oxo-Mo(V) phosphoryl complex, [Tp i Pr MoO(OPh)(OPMe 3 )] + , by acetonitrile was calculated to be 1.9 × 10 −6 . The oxo-Mo(V) phosphoryl complex is more stable than the acetonitrile analogue, whereas the oxo-Mo(IV) acetonitrile complex is more stable than the phosphoryl analogue. The higher stability of the Mo(V) phosphoryl complex may explain the phosphate inhibition of sulfite oxidase.
doi_str_mv 10.1021/ic902500h
format article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2897133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_2897133</sourcerecordid><originalsourceid>FETCH-LOGICAL-j156h-507ec97eb6208eafbed824afbbab51e70578c1e1a81f3e8a87d0583c1e836de33</originalsourceid><addsrcrecordid>eNpVjltLwzAYhoMoOg8X_oNcTlj1S7O06Y0wptOBY0OqeFfS9KvNWJOSdjL_lT_RerjQq_cEDy8h5wwuGYTsyugEQgFQ7ZEBEyEEgsHLPhkA9J5FUXJEjtt2DQAJH0eH5CiEMedMiAH5SCukc1tutmg1UlfSri-Wu_dXtHTSuZpOtMamc546-709otKd6cPUOV8YqzqkyhZ0gbpS1rT1F-QvIPXKtiV6OvN9-kLcGLdzwcINn-cXPaZuNrgb0bQxK79wy3C4XFUXI9o5mqLvjPLvdFW5tqmMxfaUHJRq0-LZr56Qp9ltOr0PHpZ38-nkIVgzEVWBgBh1EmMehSBRlTkWMhz3mqtcMIxBxFIzZEqykqNUMi5ASN5XkkcFcn5Crn-4zTavsdBoO682WeNN3R_KnDLZ_8WaKnt1b1kok5hxzj8Bm2Z-sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Influence of the Oxygen Atom Acceptor on the Reaction Coordinate and Mechanism of Oxygen Atom Transfer From the Dioxo-Mo(VI) Complex, TpiPrMoO2(OPh), to Tertiary Phosphines</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Basu, Partha ; Kail, Brian W. ; Young, Charles G.</creator><creatorcontrib>Basu, Partha ; Kail, Brian W. ; Young, Charles G.</creatorcontrib><description>The oxygen atom transfer reactivity of the dioxo-Mo(VI) complex, Tp i Pr MoO 2 (OPh) (Tp i Pr = hydrotris(3-isopropylpyrazol-1-yl)borate), with a range of tertiary phosphines (PMe 3 , PMe 2 Ph, PEt 3 , PBu n 3 , PEt 2 Ph, PEtPh 2 and PMePh 2 ) has been investigated. The first step in all the reactions follows a second-order rate law indicative of an associative transition state, consistent with nucleophilic attack by the phosphine on an oxo ligand, viz. Tp i Pr MoO 2 (OPh) + PR 3 → Tp i Pr MoO(OPh)(OPR 3 ). The calculated free energy of activation for the formation of the OPMe 3 intermediate ( Chem. Eur. J . 2006, 12 , 7501) is in excellent agreement with the experimental ΔG ‡ value reported here. The second step of the reaction, i.e., the exchange of the coordinated phosphine oxide by acetonitrile, Tp i Pr MoO(OPh)(OPR 3 ) + MeCN → Tp i Pr MoO(OPh)(MeCN) + OPR 3 , is first-order in starting complex in acetonitrile. The reaction occurs via a dissociative interchange (I d ) or associative interchange (I a ) mechanism, depending on the nature of the phosphine oxide. The activation parameters for the solvolysis of Tp i Pr MoO(OPh)(OPMe 3 ) (ΔH ‡ = 56.3 kJ mol −1 ; ΔS ‡ = −125.9 J mol −1 K −1 ; ΔG ‡ = 93.8 kJ mol −1 ) and Tp i Pr MoO(OPh)(OPEtPh 2 ) (ΔH ‡ = 66.5 kJ mol −1 ; ΔS ‡ = −67.6 J mol −1 K −1 ; ΔG ‡ = 86.7 kJ mol −1 ) by acetonitrile are indicative of I a mechanisms. In contrast, the corresponding parameters for the solvolysis reaction of Tp i Pr MoO(OPh)(OPEt 3 ) (ΔH ‡ = 95.8 kJ mol −1 ; ΔS ‡ = 26.0 J mol −1 K −1 ; ΔG ‡ = 88.1 kJ mol −1 ) and the remaining complexes by the same solvent are indicative of an I d mechanism. The equilibrium constant for the solvolysis of the oxo-Mo(V) phosphoryl complex, [Tp i Pr MoO(OPh)(OPMe 3 )] + , by acetonitrile was calculated to be 1.9 × 10 −6 . The oxo-Mo(V) phosphoryl complex is more stable than the acetonitrile analogue, whereas the oxo-Mo(IV) acetonitrile complex is more stable than the phosphoryl analogue. The higher stability of the Mo(V) phosphoryl complex may explain the phosphate inhibition of sulfite oxidase.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic902500h</identifier><identifier>PMID: 20433155</identifier><language>eng ; jpn</language><ispartof>Inorganic chemistry, 2010-06, Vol.49 (11), p.4895-4900</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Basu, Partha</creatorcontrib><creatorcontrib>Kail, Brian W.</creatorcontrib><creatorcontrib>Young, Charles G.</creatorcontrib><title>The Influence of the Oxygen Atom Acceptor on the Reaction Coordinate and Mechanism of Oxygen Atom Transfer From the Dioxo-Mo(VI) Complex, TpiPrMoO2(OPh), to Tertiary Phosphines</title><title>Inorganic chemistry</title><description>The oxygen atom transfer reactivity of the dioxo-Mo(VI) complex, Tp i Pr MoO 2 (OPh) (Tp i Pr = hydrotris(3-isopropylpyrazol-1-yl)borate), with a range of tertiary phosphines (PMe 3 , PMe 2 Ph, PEt 3 , PBu n 3 , PEt 2 Ph, PEtPh 2 and PMePh 2 ) has been investigated. The first step in all the reactions follows a second-order rate law indicative of an associative transition state, consistent with nucleophilic attack by the phosphine on an oxo ligand, viz. Tp i Pr MoO 2 (OPh) + PR 3 → Tp i Pr MoO(OPh)(OPR 3 ). The calculated free energy of activation for the formation of the OPMe 3 intermediate ( Chem. Eur. J . 2006, 12 , 7501) is in excellent agreement with the experimental ΔG ‡ value reported here. The second step of the reaction, i.e., the exchange of the coordinated phosphine oxide by acetonitrile, Tp i Pr MoO(OPh)(OPR 3 ) + MeCN → Tp i Pr MoO(OPh)(MeCN) + OPR 3 , is first-order in starting complex in acetonitrile. The reaction occurs via a dissociative interchange (I d ) or associative interchange (I a ) mechanism, depending on the nature of the phosphine oxide. The activation parameters for the solvolysis of Tp i Pr MoO(OPh)(OPMe 3 ) (ΔH ‡ = 56.3 kJ mol −1 ; ΔS ‡ = −125.9 J mol −1 K −1 ; ΔG ‡ = 93.8 kJ mol −1 ) and Tp i Pr MoO(OPh)(OPEtPh 2 ) (ΔH ‡ = 66.5 kJ mol −1 ; ΔS ‡ = −67.6 J mol −1 K −1 ; ΔG ‡ = 86.7 kJ mol −1 ) by acetonitrile are indicative of I a mechanisms. In contrast, the corresponding parameters for the solvolysis reaction of Tp i Pr MoO(OPh)(OPEt 3 ) (ΔH ‡ = 95.8 kJ mol −1 ; ΔS ‡ = 26.0 J mol −1 K −1 ; ΔG ‡ = 88.1 kJ mol −1 ) and the remaining complexes by the same solvent are indicative of an I d mechanism. The equilibrium constant for the solvolysis of the oxo-Mo(V) phosphoryl complex, [Tp i Pr MoO(OPh)(OPMe 3 )] + , by acetonitrile was calculated to be 1.9 × 10 −6 . The oxo-Mo(V) phosphoryl complex is more stable than the acetonitrile analogue, whereas the oxo-Mo(IV) acetonitrile complex is more stable than the phosphoryl analogue. The higher stability of the Mo(V) phosphoryl complex may explain the phosphate inhibition of sulfite oxidase.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVjltLwzAYhoMoOg8X_oNcTlj1S7O06Y0wptOBY0OqeFfS9KvNWJOSdjL_lT_RerjQq_cEDy8h5wwuGYTsyugEQgFQ7ZEBEyEEgsHLPhkA9J5FUXJEjtt2DQAJH0eH5CiEMedMiAH5SCukc1tutmg1UlfSri-Wu_dXtHTSuZpOtMamc546-709otKd6cPUOV8YqzqkyhZ0gbpS1rT1F-QvIPXKtiV6OvN9-kLcGLdzwcINn-cXPaZuNrgb0bQxK79wy3C4XFUXI9o5mqLvjPLvdFW5tqmMxfaUHJRq0-LZr56Qp9ltOr0PHpZ38-nkIVgzEVWBgBh1EmMehSBRlTkWMhz3mqtcMIxBxFIzZEqykqNUMi5ASN5XkkcFcn5Crn-4zTavsdBoO682WeNN3R_KnDLZ_8WaKnt1b1kok5hxzj8Bm2Z-sA</recordid><startdate>20100607</startdate><enddate>20100607</enddate><creator>Basu, Partha</creator><creator>Kail, Brian W.</creator><creator>Young, Charles G.</creator><scope>5PM</scope></search><sort><creationdate>20100607</creationdate><title>The Influence of the Oxygen Atom Acceptor on the Reaction Coordinate and Mechanism of Oxygen Atom Transfer From the Dioxo-Mo(VI) Complex, TpiPrMoO2(OPh), to Tertiary Phosphines</title><author>Basu, Partha ; Kail, Brian W. ; Young, Charles G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j156h-507ec97eb6208eafbed824afbbab51e70578c1e1a81f3e8a87d0583c1e836de33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Partha</creatorcontrib><creatorcontrib>Kail, Brian W.</creatorcontrib><creatorcontrib>Young, Charles G.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Partha</au><au>Kail, Brian W.</au><au>Young, Charles G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of the Oxygen Atom Acceptor on the Reaction Coordinate and Mechanism of Oxygen Atom Transfer From the Dioxo-Mo(VI) Complex, TpiPrMoO2(OPh), to Tertiary Phosphines</atitle><jtitle>Inorganic chemistry</jtitle><date>2010-06-07</date><risdate>2010</risdate><volume>49</volume><issue>11</issue><spage>4895</spage><epage>4900</epage><pages>4895-4900</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>The oxygen atom transfer reactivity of the dioxo-Mo(VI) complex, Tp i Pr MoO 2 (OPh) (Tp i Pr = hydrotris(3-isopropylpyrazol-1-yl)borate), with a range of tertiary phosphines (PMe 3 , PMe 2 Ph, PEt 3 , PBu n 3 , PEt 2 Ph, PEtPh 2 and PMePh 2 ) has been investigated. The first step in all the reactions follows a second-order rate law indicative of an associative transition state, consistent with nucleophilic attack by the phosphine on an oxo ligand, viz. Tp i Pr MoO 2 (OPh) + PR 3 → Tp i Pr MoO(OPh)(OPR 3 ). The calculated free energy of activation for the formation of the OPMe 3 intermediate ( Chem. Eur. J . 2006, 12 , 7501) is in excellent agreement with the experimental ΔG ‡ value reported here. The second step of the reaction, i.e., the exchange of the coordinated phosphine oxide by acetonitrile, Tp i Pr MoO(OPh)(OPR 3 ) + MeCN → Tp i Pr MoO(OPh)(MeCN) + OPR 3 , is first-order in starting complex in acetonitrile. The reaction occurs via a dissociative interchange (I d ) or associative interchange (I a ) mechanism, depending on the nature of the phosphine oxide. The activation parameters for the solvolysis of Tp i Pr MoO(OPh)(OPMe 3 ) (ΔH ‡ = 56.3 kJ mol −1 ; ΔS ‡ = −125.9 J mol −1 K −1 ; ΔG ‡ = 93.8 kJ mol −1 ) and Tp i Pr MoO(OPh)(OPEtPh 2 ) (ΔH ‡ = 66.5 kJ mol −1 ; ΔS ‡ = −67.6 J mol −1 K −1 ; ΔG ‡ = 86.7 kJ mol −1 ) by acetonitrile are indicative of I a mechanisms. In contrast, the corresponding parameters for the solvolysis reaction of Tp i Pr MoO(OPh)(OPEt 3 ) (ΔH ‡ = 95.8 kJ mol −1 ; ΔS ‡ = 26.0 J mol −1 K −1 ; ΔG ‡ = 88.1 kJ mol −1 ) and the remaining complexes by the same solvent are indicative of an I d mechanism. The equilibrium constant for the solvolysis of the oxo-Mo(V) phosphoryl complex, [Tp i Pr MoO(OPh)(OPMe 3 )] + , by acetonitrile was calculated to be 1.9 × 10 −6 . The oxo-Mo(V) phosphoryl complex is more stable than the acetonitrile analogue, whereas the oxo-Mo(IV) acetonitrile complex is more stable than the phosphoryl analogue. The higher stability of the Mo(V) phosphoryl complex may explain the phosphate inhibition of sulfite oxidase.</abstract><pmid>20433155</pmid><doi>10.1021/ic902500h</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2010-06, Vol.49 (11), p.4895-4900
issn 0020-1669
1520-510X
language eng ; jpn
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2897133
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title The Influence of the Oxygen Atom Acceptor on the Reaction Coordinate and Mechanism of Oxygen Atom Transfer From the Dioxo-Mo(VI) Complex, TpiPrMoO2(OPh), to Tertiary Phosphines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20the%20Oxygen%20Atom%20Acceptor%20on%20the%20Reaction%20Coordinate%20and%20Mechanism%20of%20Oxygen%20Atom%20Transfer%20From%20the%20Dioxo-Mo(VI)%20Complex,%20TpiPrMoO2(OPh),%20to%20Tertiary%20Phosphines&rft.jtitle=Inorganic%20chemistry&rft.au=Basu,%20Partha&rft.date=2010-06-07&rft.volume=49&rft.issue=11&rft.spage=4895&rft.epage=4900&rft.pages=4895-4900&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic902500h&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_2897133%3C/pubmedcentral%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j156h-507ec97eb6208eafbed824afbbab51e70578c1e1a81f3e8a87d0583c1e836de33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20433155&rfr_iscdi=true